|
1 Nontriviality of Arithmetic Invariants |
|
|
1 | (42) |
|
1.1 Arithmetic Invariants in Iwasawa Theory |
|
|
3 | (7) |
|
|
4 | (1) |
|
|
5 | (5) |
|
|
10 | (11) |
|
1.2.1 A Nonvanishing Result for Dirichlet L-Values |
|
|
11 | (2) |
|
1.2.2 Hecke Operators for Gm |
|
|
13 | (2) |
|
1.2.3 Measure Associated with a U(l)-Eigenfunction |
|
|
15 | (2) |
|
|
17 | (1) |
|
|
18 | (2) |
|
1.2.6 Proof of Theorem 1.8 |
|
|
20 | (1) |
|
1.3 CM Periods and L-Values |
|
|
21 | (22) |
|
1.3.1 Elliptic Modular Forms |
|
|
23 | (4) |
|
1.3.2 A Rationality Theorem, an Application |
|
|
27 | (2) |
|
1.3.3 p-Adic Elliptic Modular Form |
|
|
29 | (2) |
|
|
31 | (2) |
|
1.3.5 Invariant Differential Operators |
|
|
33 | (2) |
|
1.3.6 p-Adic Differential Operators |
|
|
35 | (4) |
|
1.3.7 Katz Measure at a Glance |
|
|
39 | (4) |
|
2 Elliptic Curves and Modular Forms |
|
|
43 | (40) |
|
|
43 | (15) |
|
|
43 | (4) |
|
2.1.2 Tangent Space and Local Rings |
|
|
47 | (4) |
|
|
51 | (1) |
|
2.1.4 Projective Plane Curve |
|
|
52 | (2) |
|
|
54 | (2) |
|
2.1.6 Riemann---Roch Theorem |
|
|
56 | (2) |
|
2.1.7 Regular Maps from a Curve into a Projective Space |
|
|
58 | (1) |
|
|
58 | (6) |
|
|
58 | (2) |
|
2.2.2 Weierstrass Equations of Elliptic Curves |
|
|
60 | (2) |
|
2.2.3 Moduli of Weierstrass Type |
|
|
62 | (2) |
|
|
64 | (10) |
|
2.3.1 Elliptic Curves over General Rings |
|
|
65 | (3) |
|
2.3.2 Geometric Modular Forms |
|
|
68 | (1) |
|
2.3.3 Archimedean Uniformization |
|
|
69 | (2) |
|
2.3.4 Weierstrass Function |
|
|
71 | (2) |
|
2.3.5 Holomorphic Modular Forms |
|
|
73 | (1) |
|
2.4 p-Adic Uniformization |
|
|
74 | (7) |
|
2.4.1 Explicit q-Expansion |
|
|
75 | (2) |
|
|
77 | (4) |
|
2.5 What We Study in This Book |
|
|
81 | (2) |
|
3 Invariants, Shimura Variety, and Hecke Algebra |
|
|
83 | (62) |
|
3.1 Abelian Component of the "Big" Hecke Algebra |
|
|
84 | (25) |
|
3.1.1 Is Characterizing Abelian Components Important? |
|
|
89 | (2) |
|
|
91 | (1) |
|
|
92 | (10) |
|
|
102 | (1) |
|
|
103 | (1) |
|
3.1.6 An Eigenvalue Formula |
|
|
104 | (2) |
|
3.1.7 Polynomial Representations of GL(2) |
|
|
106 | (1) |
|
3.1.8 Proof of Theorem 3.2 |
|
|
107 | (2) |
|
3.2 Finiteness of Abelian Varieties |
|
|
109 | (7) |
|
|
112 | (2) |
|
3.2.2 Supercuspidality Implies Supersingularity |
|
|
114 | (2) |
|
3.2.3 Twist Classes of Abelian Varieties of GL(2)-Type |
|
|
116 | (1) |
|
|
116 | (3) |
|
3.3.1 Results Toward the Vertical Theorem |
|
|
118 | (1) |
|
3.3.2 Proof of Theorem 3.25 |
|
|
119 | (1) |
|
3.4 Nonconstancy of Adjoint L-Invariant |
|
|
119 | (11) |
|
3.4.1 Proof of Theorem 3.28 |
|
|
121 | (1) |
|
3.4.2 Review of L-Invariants |
|
|
122 | (2) |
|
|
124 | (2) |
|
3.4.4 Adjoint Selmer Groups |
|
|
126 | (2) |
|
3.4.5 Greenberg's £-Invariant |
|
|
128 | (1) |
|
3.4.6 Proof of Theorem 3.31 |
|
|
128 | (1) |
|
3.4.7 II-adic £-Invariant |
|
|
129 | (1) |
|
3.5 Vanishing of the μ-Invariant of Katz L-Functions |
|
|
130 | (9) |
|
|
132 | (3) |
|
3.5.2 Modular Curves as Shimura Variety |
|
|
135 | (3) |
|
3.5.3 Subvarieties Stable under Hecke Action |
|
|
138 | (1) |
|
|
138 | (1) |
|
3.6 Hecke Stable Subvariety |
|
|
139 | (6) |
|
3.6.1 Hecke Invariant Subvariety Is a Shimura Subvariety |
|
|
140 | (1) |
|
3.6.2 Rigidity Lemma and a Sketch of Proofs |
|
|
140 | (5) |
|
4 Review of Scheme Theory |
|
|
145 | (72) |
|
4.1 Functorial Algebraic Geometry |
|
|
146 | (29) |
|
|
146 | (1) |
|
|
147 | (1) |
|
|
148 | (2) |
|
|
150 | (5) |
|
4.1.5 Zariski Open Covering |
|
|
155 | (3) |
|
|
158 | (6) |
|
4.1.7 Sheaf of Differential Forms |
|
|
164 | (3) |
|
|
167 | (2) |
|
|
169 | (2) |
|
4.1.10 Grothendieck Topology on Schemes |
|
|
171 | (2) |
|
4.1.11 Excellent Rings and Schemes |
|
|
173 | (2) |
|
|
175 | (14) |
|
4.2.1 Galois Extensions of Infinite Degree |
|
|
175 | (4) |
|
4.2.2 Automorphism Group of a Field |
|
|
179 | (1) |
|
4.2.3 Galois Theory in Categorical Setting |
|
|
180 | (7) |
|
4.2.4 Algebraization of Fundamental Groups |
|
|
187 | (2) |
|
|
189 | (16) |
|
4.3.1 Affine Algebraic Groups |
|
|
189 | (4) |
|
|
193 | (1) |
|
4.3.3 Functorial Representations |
|
|
194 | (1) |
|
4.3.4 Duality of Hopf Algebras |
|
|
195 | (2) |
|
4.3.5 Duality of Finite Flat Groups |
|
|
197 | (2) |
|
|
199 | (1) |
|
4.3.7 Barsotti---Tate Groups |
|
|
200 | (1) |
|
4.3.8 Connected---etale Exact Sequence |
|
|
201 | (2) |
|
4.3.9 Ordinary Barsotti---Tate Group |
|
|
203 | (2) |
|
|
205 | (12) |
|
|
206 | (3) |
|
4.4.2 Deformation Functors |
|
|
209 | (1) |
|
4.4.3 Connected Formal Groups |
|
|
210 | (4) |
|
4.4.4 Infinitesimal Splitting Implies Local Splitting |
|
|
214 | (3) |
|
|
217 | (8) |
|
|
217 | (8) |
|
|
217 | (3) |
|
5.1.2 Zariski's Main Theorem |
|
|
220 | (2) |
|
5.1.3 Stein Factorization |
|
|
222 | (1) |
|
|
223 | (2) |
|
6 Elliptic and Modular Curves over Rings |
|
|
225 | (56) |
|
6.1 Basics of Elliptic Curves over a Scheme |
|
|
225 | (12) |
|
6.1.1 Definition of Elliptic Curves |
|
|
226 | (2) |
|
|
228 | (1) |
|
|
229 | (4) |
|
6.1.4 Invariant Differentials Are Nowhere Vanishing |
|
|
233 | (1) |
|
6.1.5 Classification Functors |
|
|
234 | (1) |
|
|
235 | (2) |
|
6.2 Moduli of Elliptic Curves |
|
|
237 | (24) |
|
6.2.1 Moduli of Level Z 1/6 |
|
|
238 | (4) |
|
6.2.2 Compatible System of Tate Modules |
|
|
242 | (2) |
|
|
244 | (1) |
|
6.2.4 Definition of Modular Forms |
|
|
245 | (1) |
|
|
246 | (1) |
|
6.2.6 Moduli of Elliptic Curves with Level-Γ1(N) Structure |
|
|
247 | (3) |
|
6.2.7 Compactification and Modular Line Bundles |
|
|
250 | (1) |
|
|
251 | (2) |
|
6.2.9 Hecke Operators on q-Expansion |
|
|
253 | (1) |
|
6.2.10 Moduli of Principal Level Structure |
|
|
254 | (2) |
|
|
256 | (3) |
|
|
259 | (2) |
|
6.3 Deformation of Ordinary Elliptic Curves |
|
|
261 | (12) |
|
6.3.1 A Theorem of Drinfeld |
|
|
261 | (2) |
|
6.3.2 A Theorem of Serre---Tate |
|
|
263 | (1) |
|
6.3.3 Group Structure on Deformation Space |
|
|
264 | (6) |
|
6.3.4 Computation of Deformation Coordinates |
|
|
270 | (3) |
|
6.4 Elliptic Curves with Complex Multiplication |
|
|
273 | (8) |
|
|
273 | (2) |
|
6.4.2 Order of an Imaginary Quadratic Field |
|
|
275 | (1) |
|
6.4.3 Algebraic Differential on CM Elliptic Curves |
|
|
275 | (1) |
|
|
276 | (1) |
|
6.4.5 Adelic CM Level Structure |
|
|
277 | (1) |
|
6.4.6 Zeta Function of CM Elliptic Curves |
|
|
278 | (3) |
|
7 Modular Curves as Shimura Variety |
|
|
281 | (54) |
|
|
281 | (26) |
|
7.1.1 Elliptic Modular Function Fields |
|
|
282 | (3) |
|
7.1.2 Complex Points of Shimura Curve |
|
|
285 | (4) |
|
7.1.3 Elliptic Curves Up to Isogenies |
|
|
289 | (6) |
|
7.1.4 Integral Shimura Curve |
|
|
295 | (3) |
|
7.1.5 Finite-Level Structure |
|
|
298 | (2) |
|
7.1.6 Adelic Action on Shimura Curves |
|
|
300 | (1) |
|
|
301 | (2) |
|
7.1.8 Reciprocity Law at CM Points |
|
|
303 | (3) |
|
7.1.9 Degeneracy Operators |
|
|
306 | (1) |
|
|
307 | (17) |
|
7.2.1 Axiomatic Approach to Irreducibility |
|
|
307 | (3) |
|
7.2.2 Mod-p Connected Components |
|
|
310 | (4) |
|
7.2.3 Reciprocity Law and Irreducibility of Igusa Tower |
|
|
314 | (1) |
|
7.2.4 p-Adic Elliptic Modular Forms |
|
|
314 | (3) |
|
7.2.5 Reciprocity Law for Deformation Space |
|
|
317 | (4) |
|
7.2.6 Katz Differential Operator |
|
|
321 | (3) |
|
7.3 Elliptic Modular Forms of Slope 0 |
|
|
324 | (7) |
|
7.3.1 Control Theorems of p-Adic Modular Forms |
|
|
325 | (3) |
|
7.3.2 Bounding the p-Ordinary Rank |
|
|
328 | (1) |
|
7.3.3 Vertical Control Theorem |
|
|
329 | (1) |
|
7.3.4 Families of p-Ordinary Modular Forms |
|
|
330 | (1) |
|
|
331 | (4) |
|
7.4.1 Hecke Operators on p-Adic Modular Forms |
|
|
331 | (1) |
|
7.4.2 Hecke Operators on A-Adic Modular Forms |
|
|
332 | (1) |
|
7.4.3 Duality of Hecke Algebra and Hecke Modules |
|
|
333 | (2) |
|
8 Nonvanishing Modulo p of Hecke L-Values |
|
|
335 | (32) |
|
8.1 Rationality of Hecke L-Values |
|
|
336 | (15) |
|
8.1.1 Differential Operators and Rationality |
|
|
336 | (1) |
|
8.1.2 Arithmetic Hecke Characters |
|
|
337 | (2) |
|
8.1.3 Optimal Eisenstein Series |
|
|
339 | (2) |
|
|
341 | (4) |
|
8.1.5 L-Functions of an Order |
|
|
345 | (3) |
|
8.1.6 Anticyclotomic Hecke L-Values |
|
|
348 | (1) |
|
8.1.7 Values of Eisenstein Series at CM Points |
|
|
348 | (3) |
|
8.2 Nonvanishing Modulo p of L-Values |
|
|
351 | (16) |
|
8.2.1 Construction of a Modular Measure |
|
|
352 | (3) |
|
8.2.2 Nontriviality of the Modular Measure |
|
|
355 | (3) |
|
8.2.3 Preliminary to the Proof of Theorem 8.25 |
|
|
358 | (2) |
|
8.2.4 Proof of Theorem 8.25 |
|
|
360 | (1) |
|
8.2.5 Linear Independence |
|
|
361 | (3) |
|
8.2.6 C-Adic Eisenstein Measure Modulo p |
|
|
364 | (3) |
|
9 p-Adic Hecke L-Functions and Their μ-Invariants |
|
|
367 | (20) |
|
9.1 Eisenstein and Katz Measure |
|
|
367 | (10) |
|
9.1.1 q-Expansion of Eisenstein Series |
|
|
367 | (3) |
|
|
370 | (1) |
|
|
371 | (2) |
|
9.1.4 Evaluation of Katz Measure |
|
|
373 | (4) |
|
9.2 Computation of the μ-Invariant |
|
|
377 | (10) |
|
9.2.1 Splitting the Katz Measure |
|
|
377 | (2) |
|
9.2.2 Good Representatives |
|
|
379 | (2) |
|
9.2.3 Operators on p-Adic Modular Forms |
|
|
381 | (1) |
|
9.2.4 Linear Independence of Eisenstein Series |
|
|
382 | (5) |
|
10 Toric Subschemes in a Split Formal Torus |
|
|
387 | (18) |
|
10.1 Rigidity of Formal Tori |
|
|
387 | (9) |
|
10.1.1 Power Series Ring over a Field |
|
|
388 | (4) |
|
10.1.2 Linearity of Subschemes of a Formal Torus |
|
|
392 | (4) |
|
10.2 Representation of Lie Algebras |
|
|
396 | (9) |
|
|
397 | (1) |
|
10.2.2 Modules over Lie Algebras |
|
|
398 | (1) |
|
10.2.3 Semisimple Algebras |
|
|
399 | (2) |
|
10.2.4 Differential of Group Representations |
|
|
401 | (4) |
|
11 Hecke Stable Subvariety Is a Shimura Subvariety |
|
|
405 | (22) |
|
11.1 Stability under Hecke Correspondence |
|
|
405 | (22) |
|
11.1.1 Locally Linear Subvariety |
|
|
405 | (1) |
|
11.1.2 An Example of Hecke Stable Subvariety |
|
|
406 | (2) |
|
11.1.3 Stability under Toric Action, Local Study |
|
|
408 | (4) |
|
11.1.4 Stability under Toric Action, Global Study |
|
|
412 | (12) |
|
11.1.5 Linear Independence Again |
|
|
424 | (3) |
References |
|
427 | (10) |
Symbol Index |
|
437 | (4) |
Statement Index |
|
441 | (2) |
Subject Index |
|
443 | |