Atnaujinkite slapukų nuostatas

El. knyga: Elliptic Regularity Theory: A First Course

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

These lecture notes provide aself-contained introduction to regularity theory for elliptic equations andsystems in divergence form. After a short review of some classical results oneverywhere regularity for scalar-valued weak solutions, the presentationfocuses on vector-valued weak solutions to a system of several coupledequations. In the vectorial case, weak solutions may have discontinuities andso are expected, in general, to be regular only outside of a set of measurezero. Several methods are presented concerning the proof of such partialregularity results, and optimal regularity is discussed. Finally, a shortoverview is given on the current state of the art concerning the size of thesingular set on which discontinuities may occur.The notes are intended for graduate andpostgraduate students with a solid background in functional analysis and somefamiliarity with partial differential equations; they will also be of interestto researchers working on related topics.

Preliminaries.-Introduction to the Setting.- The Scalar Case.- Foundations for the VectorialCase.- Partial Regularity Results for Quasilinear Systems.

Recenzijos

The whole text is equipped with many useful and interesting remarks, which helps make the lecture notes very readable. The book seems to be a solid contribution to understanding the problems of the regularity theory. (Eugen Viszus, Mathematical Reviews, March, 2017)

1 Preliminaries
1(52)
1.1 Function Spaces
1(24)
1.1.1 Spaces of Continuous and Holder Continuous Functions
2(2)
1.1.2 Lebesgue Spaces
4(7)
1.1.3 Morrey and Campanato Spaces
11(7)
1.1.4 Sobolev Spaces
18(5)
1.1.5 Fractional Sobolev Spaces
23(2)
1.2 Criteria for Weak Differentiability
25(7)
1.3 Embedding Theorems and Inequalities
32(14)
1.4 Fine Properties of Sobolev Functions
46(7)
2 Introduction to the Setting
53(6)
3 The Scalar Case
59(26)
3.1 De Giorgi's Level Set Technique
59(15)
3.1.1 Local Boundedness
63(6)
3.1.2 Local Holder Continuity
69(5)
3.2 Moser's Iteration Technique
74(11)
3.2.1 Local Boundedness
76(5)
3.2.2 Local Holder Continuity
81(4)
4 Foundations for the Vectorial Case
85(44)
4.1 Counterexamples to Rill Regularity
86(4)
4.2 Linear Theory
90(14)
4.2.1 Hilbert Space Regularity
90(7)
4.2.2 Decay Estimates
97(7)
4.3 Approaches for Partial C0,α-Regularity
104(25)
4.3.1 The Blow-Up Technique
106(6)
4.3.2 The Method of 4-Harmonic Approximation
112(8)
4.3.3 The Direct Approach
120(9)
5 Partial Regularity Results for Quasilinear Systems
129(52)
5.1 Initial Observations and Higher Integrability
129(3)
5.2 Partial (C1.αRegularity via the Method of A-Harmonic Approximation
132(22)
5.3 The Hausdorff Dimension of the Singular Set
154(27)
5.3.1 Bounds in General Dimensions
154(14)
5.3.2 Bounds in Low Dimensions
168(13)
A Functional Analysis 181(6)
B Some Technical Lemmata 187(4)
List of Notation 191(4)
References 195(4)
Index 199