Foreword |
|
xix | |
Preface |
|
xxi | |
Acknowledgments |
|
xxiii | |
Author |
|
xxv | |
1 Introduction |
|
1 | (32) |
|
1.1 What Is Empirical Software Engineering? |
|
|
1 | (1) |
|
1.2 Overview of Empirical Studies |
|
|
2 | (1) |
|
1.3 Types of Empirical Studies |
|
|
3 | (5) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
1.3.5 Postmortem Analysis |
|
|
8 | (1) |
|
1.4 Empirical Study Process |
|
|
8 | (5) |
|
|
9 | (1) |
|
|
10 | (1) |
|
1.4.3 Research Conduct and Analysis |
|
|
11 | (1) |
|
1.4.4 Results Interpretation |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.4.6 Characteristics of a Good Empirical Study |
|
|
12 | (1) |
|
1.5 Ethics of Empirical Research |
|
|
13 | (3) |
|
|
14 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.5.5 Ethics and Open Source Software |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.6 Importance of Empirical Research |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
1.7 Basic Elements of Empirical Research |
|
|
17 | (1) |
|
|
18 | (10) |
|
1.8.1 Software Quality and Software Evolution |
|
|
18 | (2) |
|
1.8.2 Software Quality Attributes |
|
|
20 | (1) |
|
1.8.3 Measures Measurements and Metrics |
|
|
20 | (2) |
|
1.8.4 Descriptive Correlational and Cause-Effect Research |
|
|
22 | (1) |
|
1.8.5 Classification and Prediction |
|
|
22 | (1) |
|
1.8.6 Quantitative and Qualitative Data |
|
|
22 | (1) |
|
1.8.7 Independent Dependent and Confounding Variables |
|
|
23 | (1) |
|
1.8.8 Proprietary Open Source and University Software |
|
|
24 | (1) |
|
1.8.9 Within-Company and Cross-Company Analysis |
|
|
25 | (1) |
|
1.8.10 Parametric and Nonparametric Tests |
|
|
26 | (1) |
|
1.8.11 Goal/Question/Metric Method |
|
|
26 | (2) |
|
1.8.12 Software Archive or Repositories |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (4) |
2 Systematic Literature Reviews |
|
33 | (32) |
|
|
33 | (3) |
|
|
33 | (1) |
|
2.1.2 Characteristics of SRs |
|
|
34 | (1) |
|
|
35 | (1) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (9) |
|
2.3.1 Identify the Need for SR |
|
|
37 | (1) |
|
2.3.2 Formation of Research Questions |
|
|
38 | (1) |
|
2.3.3 Develop Review Protocol |
|
|
39 | (6) |
|
2.3.4 Evaluate Review Protocol |
|
|
45 | (1) |
|
2.4 Methods for Presenting Results |
|
|
46 | (5) |
|
2.4.1 Tools and Techniques |
|
|
46 | (3) |
|
|
49 | (2) |
|
|
51 | (1) |
|
2.5 Conducting the Review |
|
|
51 | (5) |
|
2.5.1 Search Strategy Execution |
|
|
51 | (2) |
|
2.5.2 Selection of Primary Studies |
|
|
53 | (1) |
|
2.5.3 Study Quality Assessment |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
53 | (3) |
|
|
56 | (2) |
|
2.7 SRs in Software Engineering |
|
|
58 | (2) |
|
|
60 | (1) |
|
|
61 | (4) |
3 Software Metrics |
|
65 | (38) |
|
|
65 | (2) |
|
3.1.1 What Are Software Metrics? |
|
|
66 | (1) |
|
3.1.2 Application Areas of Metrics |
|
|
66 | (1) |
|
3.1.3 Characteristics of Software Metrics |
|
|
67 | (1) |
|
|
67 | (4) |
|
3.2.1 Product and Process Metrics |
|
|
68 | (1) |
|
|
69 | (2) |
|
|
71 | (1) |
|
3.4 Measuring Software Quality |
|
|
72 | (4) |
|
3.4.1 Software Quality Metrics Based on Defects |
|
|
72 | (2) |
|
|
72 | (1) |
|
3.4.1.2 Phase-Based Defect Density |
|
|
73 | (1) |
|
3.4.1.3 Defect Removal Effectiveness |
|
|
73 | (1) |
|
|
74 | (1) |
|
|
75 | (1) |
|
|
76 | (13) |
|
3.5.1 Popular OO Metric Suites |
|
|
77 | (2) |
|
|
79 | (4) |
|
|
83 | (2) |
|
3.5.4 Inheritance Metrics |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (1) |
|
3.6 Dynamic Software Metrics |
|
|
89 | (1) |
|
3.6.1 Dynamic Coupling Metrics |
|
|
89 | (1) |
|
3.6.2 Dynamic Cohesion Metrics |
|
|
89 | (1) |
|
3.6.3 Dynamic Complexity Metrics |
|
|
90 | (1) |
|
3.7 System Evolution and Evolutionary Metrics |
|
|
90 | (2) |
|
3.7.1 Revisions Refactorings and Bug-Fixes |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (1) |
|
3.8 Validation of Metrics |
|
|
92 | (1) |
|
|
93 | (7) |
|
3.9.1 Designing a Good Quality System |
|
|
93 | (1) |
|
3.9.2 Which Software Metrics to Select? |
|
|
94 | (1) |
|
3.9.3 Computing Thresholds |
|
|
95 | (4) |
|
3.9.3.1 Statistical Model to Compute Threshold |
|
|
96 | (2) |
|
3.9.3.2 Usage of ROC Curve to Calculate the Threshold Values |
|
|
98 | (1) |
|
3.9.4 Practical Relevance and Use of Software Metrics in Research |
|
|
99 | (1) |
|
3.9.5 Industrial Relevance of Software Metrics |
|
|
100 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
4 Experimental Design |
|
103 | (40) |
|
4.1 Overview of Experimental Design |
|
|
103 | (1) |
|
4.2 Case Study: Fault Prediction Systems |
|
|
103 | (3) |
|
4.2.1 Objective of the Study |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
105 | (1) |
|
|
105 | (1) |
|
|
106 | (3) |
|
|
106 | (1) |
|
4.3.2 Characteristics of an RQ |
|
|
107 | (1) |
|
4.3.3 Example: RQs Related to FPS |
|
|
108 | (1) |
|
4.4 Reviewing the Literature |
|
|
109 | (8) |
|
4.4.1 What Is a Literature Review? |
|
|
109 | (1) |
|
4.4.2 Steps in a Literature Review |
|
|
110 | (1) |
|
4.4.3 Guidelines for Writing a Literature Review |
|
|
111 | (1) |
|
4.4.4 Example: Literature Review in FPS |
|
|
112 | (5) |
|
|
117 | (1) |
|
4.5.1 Independent and Dependent Variables |
|
|
117 | (1) |
|
4.5.2 Selection of Variables |
|
|
118 | (1) |
|
4.5.3 Variables Used in Software Engineering |
|
|
118 | (1) |
|
4.5.4 Example: Variables Used in the FPS |
|
|
118 | (1) |
|
4.6 Terminology Used in Study Types |
|
|
118 | (2) |
|
4.7 Hypothesis Formulation |
|
|
120 | (11) |
|
4.7.1 Experiment Design Types |
|
|
120 | (1) |
|
4.7.2 What Is Hypothesis? |
|
|
121 | (1) |
|
4.7.3 Purpose and Importance of Hypotheses in an Empirical Research |
|
|
121 | (1) |
|
4.7.4 How to Form a Hypothesis? |
|
|
122 | (2) |
|
4.7.5 Steps in Hypothesis Testing |
|
|
124 | (5) |
|
4.7.5.1 Step 1: State the Null and Alternative Hypothesis |
|
|
124 | (2) |
|
4.7.5.2 Step 2: Choose the Test of Significance |
|
|
126 | (1) |
|
4.7.5.3 Step 3: Compute the Test Statistic and Associated p-Value |
|
|
126 | (1) |
|
4.7.5.4 Step 4: Define Significance Level |
|
|
127 | (1) |
|
4.7.5.5 Step 5: Derive Conclusions |
|
|
127 | (2) |
|
4.7.6 Example: Hypothesis Formulation in FPS |
|
|
129 | (2) |
|
|
130 | (1) |
|
|
130 | (1) |
|
|
131 | (5) |
|
4.8.1 Data-Collection Strategies |
|
|
131 | (1) |
|
4.8.2 Data Collection from Repositories |
|
|
132 | (2) |
|
4.8.3 Example: Data Collection in FPS |
|
|
134 | (2) |
|
4.9 Selection of Data Analysis Methods |
|
|
136 | (3) |
|
4.9.1 Type of Dependent Variable |
|
|
137 | (1) |
|
4.9.2 Nature of the Data Set |
|
|
137 | (1) |
|
4.9.3 Aspects of Data Analysis Methods |
|
|
138 | (1) |
|
|
139 | (1) |
|
|
140 | (3) |
5 Mining Data from Software Repositories |
|
143 | (64) |
|
5.1 Configuration Management Systems |
|
|
143 | (4) |
|
5.1.1 Configuration Identification |
|
|
144 | (1) |
|
5.1.2 Configuration Control |
|
|
144 | (2) |
|
5.1.3 Configuration Accounting |
|
|
146 | (1) |
|
5.2 Importance of Mining Software Repositories |
|
|
147 | (1) |
|
5.3 Common Types of Software Repositories |
|
|
147 | (3) |
|
5.3.1 Historical Repositories |
|
|
148 | (1) |
|
5.3.2 Run-Time Repositories or Deployment Logs |
|
|
149 | (1) |
|
5.3.3 Source Code Repositories |
|
|
150 | (1) |
|
5.4 Understanding Systems |
|
|
150 | (1) |
|
5.4.1 System Characteristics |
|
|
150 | (1) |
|
|
151 | (1) |
|
5.5 Version Control Systems |
|
|
151 | (4) |
|
|
151 | (2) |
|
5.5.2 Classification of VCS |
|
|
153 | (3) |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
154 | (1) |
|
|
155 | (1) |
|
5.7 Extracting Data from Software Repositories |
|
|
156 | (14) |
|
|
157 | (2) |
|
|
159 | (3) |
|
|
162 | (4) |
|
|
166 | (3) |
|
5.7.5 Integrating Bugzilla with Other VCS |
|
|
169 | (1) |
|
5.8 Static Source Code Analysis |
|
|
170 | (5) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
172 | (1) |
|
|
172 | (1) |
|
5.8.3 Software Metrics Calculation Tools |
|
|
173 | (2) |
|
5.9 Software Historical Analysis |
|
|
175 | (5) |
|
5.9.1 Understanding Dependencies in a System |
|
|
176 | (1) |
|
5.9.2 Change Impact Analysis |
|
|
177 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
5.9.5 User and Team Dynamics Understanding |
|
|
178 | (1) |
|
|
178 | (1) |
|
5.9.7 Mining Textual Descriptions |
|
|
179 | (1) |
|
5.9.8 Social Network Analysis |
|
|
179 | (1) |
|
5.9.9 Change Smells and Refactoring |
|
|
180 | (1) |
|
|
180 | (1) |
|
5.10 Software Engineering Repositories and Open Research Data Sets |
|
|
180 | (7) |
|
|
180 | (1) |
|
|
181 | (1) |
|
5.10.3 PRedictOr Models In Software Engineering |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
5.10.6 Ultimate Debian Database |
|
|
183 | (1) |
|
5.10.7 Bug Prediction Data Set |
|
|
183 | (1) |
|
5.10.8 International Software Benchmarking Standards Group |
|
|
184 | (1) |
|
|
184 | (1) |
|
5.10.10 Software-Artifact Infrastructure Repository |
|
|
184 | (1) |
|
|
185 | (1) |
|
5.10.12 SourceForge Research Data Archive |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
5.10.15 Source Code ECO System Linked Data |
|
|
186 | (1) |
|
5.11 Case Study: Defect Collection and Reporting System for Git Repository |
|
|
187 | (16) |
|
|
187 | (1) |
|
|
188 | (1) |
|
|
188 | (2) |
|
5.11.4 Data Source and Dependencies |
|
|
190 | (1) |
|
|
191 | (8) |
|
5.11.5.1 Defect Details Report |
|
|
191 | (2) |
|
5.11.5.2 Defect Count and Metrics Report |
|
|
193 | (1) |
|
5.11.5.3 LOC Changes Report |
|
|
194 | (1) |
|
5.11.5.4 Newly Added Source Files |
|
|
195 | (1) |
|
5.11.5.5 Deleted Source Files |
|
|
196 | (1) |
|
5.11.5.6 Consolidated Defect and Change Report |
|
|
197 | (1) |
|
5.11.5.7 Descriptive Statistics Report for the Incorporated Metrics |
|
|
198 | (1) |
|
5.11.6 Additional Features |
|
|
199 | (3) |
|
5.11.6.1 Cloning of Git-Based Software Repositories |
|
|
199 | (2) |
|
|
201 | (1) |
|
5.11.7 Potential Applications of DCRS |
|
|
202 | (1) |
|
5.11.7.1 Defect Prediction Studies |
|
|
202 | (1) |
|
5.11.7.2 Change-Proneness Studies |
|
|
203 | (1) |
|
5.11.7.3 Statistical Comparison |
|
|
203 | (1) |
|
5.11.8 Concluding Remarks |
|
|
203 | (1) |
|
|
203 | (1) |
|
|
204 | (3) |
6 Data Analysis and Statistical Testing |
|
207 | (68) |
|
6.1 Analyzing the Metric Data |
|
|
207 | (12) |
|
6.1.1 Measures of Central Tendency |
|
|
207 | (4) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (1) |
|
6.1.1.4 Choice of Measures of Central Tendency |
|
|
209 | (2) |
|
6.1.2 Measures of Dispersion |
|
|
211 | (1) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
213 | (5) |
|
|
214 | (2) |
|
|
216 | (2) |
|
6.1.6 Correlation Analysis |
|
|
218 | (1) |
|
6.1.7 Example-Descriptive Statistics of Fault Prediction System |
|
|
218 | (1) |
|
6.2 Attribute Reduction Methods |
|
|
219 | (4) |
|
6.2.1 Attribute Selection |
|
|
221 | (1) |
|
6.2.1.1 Univariate Analysis |
|
|
222 | (1) |
|
6.2.1.2 Correlation-Based Feature Selection |
|
|
222 | (1) |
|
6.2.2 Attribute Extraction |
|
|
222 | (1) |
|
6.2.2.1 Principal Component Method |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
223 | (2) |
|
|
224 | (1) |
|
6.3.2 Steps in Hypothesis Testing |
|
|
224 | (1) |
|
|
225 | (38) |
|
6.4.1 Overview of Statistical Tests |
|
|
225 | (1) |
|
6.4.2 Categories of Statistical Tests |
|
|
225 | (1) |
|
6.4.3 One-Tailed and Two Tailed Tests |
|
|
226 | (2) |
|
6.4.4 Type I and Type II Errors |
|
|
228 | (1) |
|
6.4.5 Interpreting Significance Results |
|
|
229 | (1) |
|
|
229 | (6) |
|
6.4.6.1 One Sample t-Test |
|
|
229 | (3) |
|
6.4.6.2 Two Sample t-Test |
|
|
232 | (1) |
|
|
233 | (2) |
|
|
235 | (7) |
|
|
242 | (2) |
|
6.4.9 Analysis of Variance Test |
|
|
244 | (3) |
|
|
244 | (3) |
|
6.4.10 Wilcoxon Signed Test |
|
|
247 | (3) |
|
6.4.11 Wilcoxon-Mann-Whitney Test (U-Test) |
|
|
250 | (4) |
|
6.4.12 Kruskal-Wallis Test |
|
|
254 | (3) |
|
|
257 | (2) |
|
|
259 | (2) |
|
6.4.15 Bonferroni-Dunn Test |
|
|
261 | (2) |
|
6.4.16 Univariate Analysis |
|
|
263 | (1) |
|
6.5 Example-Univariate Analysis Results for Fault Prediction System |
|
|
263 | (2) |
|
|
265 | (6) |
|
|
271 | (4) |
7 Model Development and Interpretation |
|
275 | (56) |
|
|
275 | (5) |
|
|
276 | (1) |
|
7.1.2 Attribute Reduction |
|
|
277 | (1) |
|
7.1.3 Model Construction using Learning Algorithms/Techniques |
|
|
277 | (1) |
|
7.1.4 Validating the Model Predicted |
|
|
277 | (1) |
|
|
278 | (1) |
|
7.1.6 Interpretation of Results |
|
|
278 | (1) |
|
7.1.7 Example-Software Quality Prediction System |
|
|
278 | (2) |
|
7.2 Statistical Multiple Regression Techniques |
|
|
280 | (1) |
|
7.2.1 Multivariate Analysis |
|
|
280 | (1) |
|
7.2.2 Coefficients and Selection of Variables |
|
|
280 | (1) |
|
7.3 Machine Learning Techniques |
|
|
281 | (9) |
|
7.3.1 Categories of ML Techniques |
|
|
281 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
282 | (1) |
|
|
283 | (2) |
|
7.3.6 Support Vector Machines |
|
|
285 | (1) |
|
7.3.7 Rule-Based Learning |
|
|
286 | (1) |
|
7.3.8 Search-Based Techniques |
|
|
287 | (3) |
|
7.4 Concerns in Model Prediction |
|
|
290 | (2) |
|
7.4.1 Problems with Model Prediction |
|
|
290 | (1) |
|
7.4.2 Multicollinearity Analysis |
|
|
290 | (1) |
|
7.4.3 Guidelines for Selecting Learning Techniques |
|
|
291 | (1) |
|
7.4.4 Dealing with Imbalanced Data |
|
|
291 | (1) |
|
|
292 | (1) |
|
7.5 Performance Measures for Categorical Dependent Variable |
|
|
292 | (12) |
|
|
292 | (2) |
|
7.5.2 Sensitivity and Specificity |
|
|
294 | (1) |
|
7.5.3 Accuracy and Precision |
|
|
295 | (1) |
|
|
295 | (1) |
|
7.5.5 F-measure G-measure and G-mean |
|
|
295 | (3) |
|
7.5.6 Receiver Operating Characteristics Analysis |
|
|
298 | (4) |
|
|
298 | (2) |
|
7.5.6.2 Area Under the ROC Curve |
|
|
300 | (1) |
|
7.5.6.3 Cutoff Point and Co-Ordinates of the ROC Curve |
|
|
300 | (2) |
|
7.5.7 Guidelines for Using Performance Measures |
|
|
302 | (2) |
|
7.6 Performance Measures for Continuous Dependent Variable |
|
|
304 | (2) |
|
7.6.1 Mean Relative Error |
|
|
304 | (1) |
|
7.6.2 Mean Absolute Relative Error |
|
|
304 | (1) |
|
|
305 | (1) |
|
|
306 | (3) |
|
7.7.1 Hold-Out Validation |
|
|
307 | (1) |
|
7.7.2 K-Fold Cross-Validation |
|
|
307 | (1) |
|
7.7.3 Leave-One-Out Validation |
|
|
307 | (2) |
|
7.8 Model Comparison Tests |
|
|
309 | (1) |
|
7.9 Interpreting the Results |
|
|
310 | (5) |
|
7.9.1 Analyzing Performance Measures |
|
|
310 | (2) |
|
7.9.2 Presenting Qualitative and Quantitative Results |
|
|
312 | (1) |
|
7.9.3 Drawing Conclusions from Hypothesis Testing |
|
|
312 | (1) |
|
7.9.4 Example-Discussion of Results in Hypothesis Testing Using Univariate Analysis for Fault Prediction System |
|
|
312 | (3) |
|
7.10 Example-Comparing ML Techniques for Fault Prediction |
|
|
315 | (8) |
|
|
323 | (1) |
|
|
324 | (7) |
8 Validity Threats |
|
331 | (22) |
|
8.1 Categories of Threats to Validity |
|
|
331 | (6) |
|
8.1.1 Conclusion Validity |
|
|
331 | (2) |
|
|
333 | (1) |
|
|
334 | (1) |
|
|
335 | (2) |
|
8.1.5 Essential Validity Threats |
|
|
337 | (1) |
|
8.2 Example-Threats to Validity in Fault Prediction System |
|
|
337 | (4) |
|
8.2.1 Conclusion Validity |
|
|
337 | (2) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
8.3 Threats and Their Countermeasures |
|
|
341 | (9) |
|
|
350 | (1) |
|
|
350 | (3) |
9 Reporting Results |
|
353 | (12) |
|
9.1 Reporting and Presenting Results |
|
|
353 | (6) |
|
9.1.1 When to Disseminate or Report Results? |
|
|
354 | (1) |
|
9.1.2 Where to Disseminate or Report Results? |
|
|
354 | (1) |
|
|
355 | (6) |
|
|
356 | (1) |
|
|
357 | (1) |
|
|
357 | (1) |
|
9.1.3.4 Experimental Design |
|
|
357 | (1) |
|
|
358 | (1) |
|
|
358 | (1) |
|
9.1.3.7 Discussion and Interpretation |
|
|
359 | (1) |
|
9.1.3.8 Threats to Validity |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
9.2 Guidelines for Masters and Doctoral Students |
|
|
359 | (2) |
|
9.3 Research Ethics and Misconduct |
|
|
361 | (1) |
|
|
362 | (1) |
|
|
362 | (1) |
|
|
363 | (2) |
10 Mining Unstructured Data |
|
365 | (26) |
|
|
365 | (3) |
|
10.1.1 What Is Unstructured Data? |
|
|
366 | (1) |
|
10.1.2 Multiple Classifications |
|
|
366 | (1) |
|
10.1.3 Importance of Text Mining |
|
|
367 | (1) |
|
10.1.4 Characteristics of Text Mining |
|
|
367 | (1) |
|
10.2 Steps in Text Mining |
|
|
368 | (10) |
|
10.2.1 Representation of Text Documents |
|
|
368 | (1) |
|
10.2.2 Preprocessing Techniques |
|
|
368 | (4) |
|
|
370 | (1) |
|
10.2.2.2 Removal of Stop Words |
|
|
370 | (1) |
|
10.2.2.3 Stemming Algorithm |
|
|
371 | (1) |
|
|
372 | (3) |
|
10.2.4 Constructing a Vector Space Model |
|
|
375 | (2) |
|
10.2.5 Predicting and Validating the Text Classifier |
|
|
377 | (1) |
|
10.3 Applications of Text Mining in Software Engineering |
|
|
378 | (1) |
|
10.3.1 Mining the Fault Reports to Predict the Severity of the Faults |
|
|
378 | (1) |
|
10.3.2 Mining the Change Logs to Predict the Effort |
|
|
378 | (1) |
|
10.3.3 Analyzing the SRS Document to Classify Requirements into NFRs |
|
|
378 | (1) |
|
10.4 Example-Automated Severity Assessment of Software Defect Reports |
|
|
379 | (8) |
|
|
379 | (1) |
|
|
380 | (1) |
|
10.4.3 Experimental Design |
|
|
380 | (2) |
|
|
382 | (3) |
|
10.4.5 Discussion of Results |
|
|
385 | (2) |
|
10.4.6 Threats to Validity |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
387 | (1) |
|
|
388 | (3) |
11 Demonstrating Empirical Procedures |
|
391 | (38) |
|
|
391 | (1) |
|
|
391 | (1) |
|
|
392 | (1) |
|
|
392 | (1) |
|
|
392 | (2) |
|
|
392 | (1) |
|
|
392 | (1) |
|
|
393 | (1) |
|
11.2.4 Technique Selection |
|
|
393 | (1) |
|
|
394 | (1) |
|
|
394 | (1) |
|
|
395 | (6) |
|
11.4.1 Problem Definition |
|
|
395 | (1) |
|
11.4.2 Research Questions |
|
|
395 | (1) |
|
11.4.3 Variables Selection |
|
|
396 | (1) |
|
11.4.4 Hypothesis Formulation |
|
|
397 | (1) |
|
|
397 | (1) |
|
|
398 | (1) |
|
11.4.6 Empirical Data Collection |
|
|
399 | (1) |
|
11.4.7 Technique Selection |
|
|
400 | (1) |
|
|
401 | (1) |
|
11.5 Research Methodology |
|
|
401 | (3) |
|
11.5.1 Description of Techniques |
|
|
401 | (3) |
|
11.5.2 Performance Measures and Validation Method |
|
|
404 | (1) |
|
|
404 | (16) |
|
11.6.1 Descriptive Statistics |
|
|
404 | (4) |
|
|
408 | (1) |
|
|
408 | (1) |
|
11.6.4 Tenfold Cross-Validation Results |
|
|
408 | (8) |
|
11.6.5 Hypothesis Testing and Evaluation |
|
|
416 | (3) |
|
|
419 | (1) |
|
11.7 Discussion and Interpretation of Results |
|
|
420 | (3) |
|
|
423 | (1) |
|
11.8.1 Conclusion Validity |
|
|
423 | (1) |
|
|
423 | (1) |
|
11.8.3 Construct Validity |
|
|
423 | (1) |
|
|
423 | (1) |
|
11.9 Conclusions and Future Work |
|
|
424 | (1) |
|
|
425 | (4) |
12 Tools for Analyzing Data |
|
429 | (16) |
|
|
429 | (1) |
|
|
429 | (1) |
|
|
430 | (1) |
|
|
430 | (1) |
|
|
431 | (1) |
|
|
431 | (3) |
|
|
434 | (3) |
|
Appendix: Statistical Tables |
|
|
437 | (8) |
References |
|
445 | (14) |
Index |
|
459 | |