Atnaujinkite slapukų nuostatas

El. knyga: Energy Harvesting Communications: Principles and Theories

  • Formatas: EPUB+DRM
  • Serija: IEEE Press
  • Išleidimo metai: 28-Dec-2018
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781119383086
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: IEEE Press
  • Išleidimo metai: 28-Dec-2018
  • Leidėjas: Wiley-IEEE Press
  • Kalba: eng
  • ISBN-13: 9781119383086
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Provides a systematic overview of a hot research area, examining the principles and theories of energy harvesting communications 

This book provides a detailed and advanced level introduction to the fundamentals of energy harvesting techniques and their use in state-of-the-art communications systems. It fills the gap in the market by covering both basic techniques in energy harvesting and advanced topics in wireless communications. More importantly, it discusses the application of energy harvesting in communications systems to give readers at different levels a full understanding of these most recent advances in communications technologies. 

The first half of Energy Harvesting Communications: Principles and Theories focuses on the challenges brought by energy harvesting in communications. The second part of the book looks at different communications applications enhanced by energy harvesting.  It offers in-depth chapters that: discuss different energy sources harvested for communications; examine the energy harvesters used for widely used sources; study the physical layer and upper layer of the energy harvesting communications device; and investigate wireless powered communications, energy harvesting cognitive radios, and energy harvesting relaying as applications. 

  • Methodically examines the state-of-the-art of energy harvesting techniques
  • Provides comprehensive coverage from basic energy harvesting sources and devices to the end users of these sources and devices
  • Looks at the fundamental principles of energy harvesting communications, and biomedical application and intra-body communications
  • Written in a linear order so that beginners can learn the subject and experienced users can attain a broader view

Written by a renowned expert in the field, Energy Harvesting Communications: Principles and Theories is an excellent resource for students, researchers, and others interested in the subject.

Preface xi
Acronyms xiii
1 Introduction 1(4)
1.1 Background
1(1)
1.2 Relationship with Green Communications
2(1)
1.3 Potential Applications
3(1)
1.3.1 Energy Harvesting for 5G
3(1)
1.4 Outline of
Chapters
4(1)
2 Energy Sources 5(14)
2.1 Introduction
5(1)
2.2 Types of Sources
6(3)
2.2.1 Mechanical Energy
6(2)
2.2.2 Solar/Light Energy
8(1)
2.2.3 Electromagnetic Energy
9(1)
2.3 Predictive Models of Sources
9(7)
2.3.1 Solar Energy Modeling
10(2)
2.3.2 Ambient RF Energy Modeling
12(4)
2.4 Summary
16(3)
3 Energy Harvesters 19(20)
3.1 Introduction
19(1)
3.2 Photovoltaic Panels
19(6)
3.2.1 Principles
20(2)
3.2.2 Models
22(3)
3.3 Radio Frequency Energy Harvester
25(6)
3.3.1 Principles
26(2)
3.3.2 Efficiencies
28(3)
3.4 Overall Models
31(4)
3.5 Battery and Supercapacitor
35(1)
3.5.1 Battery
35(1)
3.5.2 Supercapacitor
36(1)
3.6 Summary
36(3)
4 Physical Layer Techniques 39(62)
4.1 Introduction
39(1)
4.2 Effect of Energy Harvesting
40(15)
4.2.1 Distribution of Transmission Power
41(2)
4.2.2 Transmission Delay and Probability
43(4)
4.2.3 Bit Error Rate
47(5)
4.2.4 Achievable Rate
52(2)
4.2.5 General Information Theoretic Limits
54(1)
4.3 Energy Harvesting Detection
55(6)
4.4 Energy Harvesting Estimation
61(22)
4.4.1 With Relaying
62(17)
4.4.1.1 Scheme 1
62(4)
4.4.1.2 Scheme 2
66(2)
4.4.1.3 Scheme 3
68(2)
4.4.1.4 Scheme 4
70(1)
4.4.1.5 Scheme 5
71(1)
4.4.1.6 Scheme 6
72(7)
4.4.2 Without Relaying
79(4)
4.5 Energy Transmission Waveform
83(5)
4.5.1 Scenario
84(1)
4.5.2 Energy Waveform Optimization
85(3)
4.5.2.1 Linear Harvester
85(1)
4.5.2.2 Non-Linear Harvester
86(2)
4.6 Other Issues and Techniques
88(10)
4.6.1 Circuit Power Consumption
88(1)
4.6.2 Physical Layer Security
89(2)
4.6.3 Non-orthogonal Multiple Access
91(1)
4.6.4 Joint Detection and Estimation
92(6)
4.7 Summary
98(3)
5 Upper Layer Techniques 101(24)
5.1 Introduction
101(1)
5.2 Media Access Control Protocols
102(9)
5.2.1 Duty Cycling
102(8)
5.2.1.1 Wireless Power Transfer
103(4)
5.2.1.2 Ambient Energy Harvesting
107(3)
5.2.2 Other Issues in MAC Protocols
110(1)
5.3 Routing Protocols
111(7)
5.3.1 Ambient Energy Harvesting
112(5)
5.3.2 Wireless Power Transfer
117(1)
5.4 Other Issues in the Upper Layers
118(5)
5.4.1 Scheduling
118(3)
5.4.2 Effective Capacity
121(2)
5.5 Summary
123(2)
6 Wireless Powered Communications 125(50)
6.1 Introduction
125(1)
6.2 Types of Wireless Powered Communications
126(1)
6.3 Simultaneous Wireless Information and Power Transfer
127(8)
6.3.1 Ideal Implementations
128(2)
6.3.2 Practical Implementations
130(5)
6.3.2.1 Time Switching
130(2)
6.3.2.2 Power Splitting
132(2)
6.3.2.3 General Scheme
134(1)
6.4 Hybrid Access Point
135(15)
6.4.1 Rate-Energy Tradeoff
135(3)
6.4.2 Fairness Issue
138(1)
6.4.3 Channel Knowledge Issue
138(12)
6.4.3.1 Average Achievable Rate
139(2)
6.4.3.2 Average BER
141(3)
6.4.3.3 Numerical Examples
144(6)
6.5 Power Beacon
150(3)
6.5.1 System and Design Problem
150(2)
6.5.2 More Notes
152(1)
6.6 Other Issues
153(19)
6.6.1 Effect of Interference on Wireless Power
153(4)
6.6.1.1 System and Assumptions
153(1)
6.6.1.2 Performances with Interference
154(1)
6.6.1.3 Performances without Interference
155(1)
6.6.1.4 Numerical Examples
155(2)
6.6.2 Effect of Interference by Wireless Power
157(6)
6.6.2.1 System and Assumptions
158(1)
6.6.2.2 Average Interference Power
159(1)
6.6.2.3 Rate
159(2)
6.6.2.4 Numerical Examples
161(2)
6.6.3 Exploitation of Interference
163(6)
6.6.4 Multiple Antennas
169(3)
6.7 An Example: Wireless Powered Sensor Networks
172(1)
6.8 Summary
172(3)
7 Energy Harvesting Cognitive Radios 175(46)
7.1 Introduction
175(5)
7.1.1 Cognitive Radio
175(2)
7.1.2 Cognitive Radio Functions
177(1)
7.1.3 Spectrum Sensing
177(1)
7.1.4 Energy Harvesting Cognitive Radio
178(2)
7.2 Conventional Cognitive Radio
180(9)
7.2.1 Different Types of Cognitive Radio Systems
180(2)
7.2.2 Spectrum Sensing Methods
182(7)
7.2.2.1 Energy Detection
182(4)
7.2.2.2 Feature Detection
186(3)
7.3 Types of Energy Harvesting Cognitive Radio
189(3)
7.3.1 Protocols
189(1)
7.3.2 Energy Sources
190(2)
7.4 From the Secondary Base Station
192(6)
7.5 From the Primary User
198(12)
7.5.1 Conventional PU
198(6)
7.5.2 Wireless Powered PU
204(6)
7.6 From the Ambient Environment
210(5)
7.7 Information Energy Cooperation
215(2)
7.8 Other Important Issues
217(1)
7.9 Summary
218(3)
8 Energy Harvesting Relaying 221(72)
8.1 Introduction
221(3)
8.1.1 Wireless Relaying
221(1)
8.1.2 Relaying Protocols
222(1)
8.1.3 Energy Harvesting Relaying
223(1)
8.2 Conventional Relaying
224(11)
8.2.1 Amplify-and-Forward Relaying
224(1)
8.2.2 Decode-and-Forward Relaying
225(1)
8.2.3 Performance Metrics
226(3)
8.2.3.1 Amplify-and-Forward
226(1)
8.2.3.2 Decode-and-Forward
227(2)
8.2.4 Relay Selection
229(4)
8.2.4.1 Full Selection
231(1)
8.2.4.2 Partial Selection
231(2)
8.2.5 Two-Way Relaying
233(2)
8.3 Types of Energy Harvesting Relaying
235(2)
8.4 From the Ambient Environment
237(4)
8.5 From the Power Transmitter
241(5)
8.5.1 One User and Single Antenna
241(1)
8.5.2 Multiple Users and Single Antenna
242(2)
8.5.3 One User and Multiple Antennas
244(2)
8.6 From the Source
246(24)
8.6.1 Amplify-and-Forward Relaying
247(3)
8.6.2 Decode-and-Forward Relaying
250(10)
8.6.2.1 Instantaneous Transmission
251(2)
8.6.2.2 Delay- or Error-Constrained Transmission
253(1)
8.6.2.3 Delay- or Error-Tolerant Transmission
254(1)
8.6.2.4 Numerical Examples
255(5)
8.6.3 Energy Harvesting Source
260(10)
8.7 Other Important Issues
270(22)
8.7.1 Interference
270(5)
8.7.1.1 Time Switching
271(2)
8.7.1.2 Power Splitting
273(2)
8.7.2 Multi-Hop
275(16)
8.7.2.1 Time Switching
276(4)
8.7.2.2 Power Splitting
280(2)
8.7.2.3 Numerical Examples
282(9)
8.7.3 Others
291(1)
8.8 Summary
292(1)
References 293(14)
Index 307
YUNFEI CHEN, PHD, is an Associate Professor at the University of Warwick, UK. His research interests include Communications and Statistical Signal Processing, Wireless System Design and Analysis, Energy Harvesting, Wireless Relaying and Sensing, and Cognitive Radios. He is a member of the Technical Program Committees for most major IEEE conferences on communications, including ICC, Globecom, WCNC, and VTC, and is a Senior Member of the IEEE. He has published several well-cited papers in the areas of energy harvesting and wireless communications, including three best paper awards.