Atnaujinkite slapukų nuostatas

El. knyga: Energy for Sustainable Development: Demand, Supply, Conversion and Management

Edited by (Professor at the University of Malaya, Kuala Lumpur, Malaysia, and Director/Founder of t), Edited by (Associate Professor, UM Power Energy Dedicated Advanced Centre, Higher Institution Centre of Excellence (HICoE), University of Malaya, Malaysia)
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-Oct-2019
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128146460
  • Formatas: EPUB+DRM
  • Išleidimo metai: 30-Oct-2019
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128146460

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Energy for Sustainable Development: Demand, Supply, Conversion and Management presents a comprehensive look at recent developments and provides guidance on energy demand, supply, analysis and forecasting of modern energy technologies for sustainable energy conversion. The book analyzes energy management techniques and the economic and environmental impact of energy usage and storage. Including modern theories and the latest technologies used in the conversion of energy for traditional fossil fuels and renewable energy sources, this book provides a valuable reference on recent innovations. Researchers, engineers and policymakers will find this book to be a comprehensive guide on modern theories and technologies for sustainable development.

  • Uniquely covers Energy Demand, Supply, Conversion and Management in one complete reference
  • Offers relevant information for both undergraduate and postgraduate programs on energy conversion, making it a key reference for study
  • Includes extensive coverage that links energy conversion with efficiency and management through storage, savings, economics and environmental impact
Contributors xi
Biography xiii
1 Introduction to energy and sustainable development
M.M. Islam
M. Hasanuzzaman
1.1 Energy and civilization
1(1)
1.2 Global energy resources
2(11)
1.2.1 Coal
3(1)
1.2.2 Oil
4(1)
1.2.3 Natural gas
5(2)
1.2.4 Nuclear energy
7(1)
1.2.5 Hydropower
7(1)
1.2.6 Bioenergy
8(1)
1.2.7 Solar
9(1)
1.2.8 Ceothermal
9(1)
1.2.9 Wind energy
10(1)
1.2.10 Marine energy
10(1)
1.2.11 Waste-to-energy
11(1)
1.2.12 Carbon capture and storage
11(1)
1.2.13 E-storage
12(1)
1.2.14 Energy efficiency
13(1)
1.3 Energy management, energy policy, and energy strategy
13(2)
1.3.1 Energy management
13(1)
1.3.2 Energy policy
14(1)
1.3.3 Energy strategy
15(1)
1.4 Energy management for sustainable development
15(4)
References
16(3)
2 Modern energy conversion technologies
M.M. Islam
M. Hasanuzzaman
A.K. Pandey
N.A. Rahim
2.1 Introduction
19(1)
2.2 Fossil fuel energy conversion
19(6)
2.2.1 Internal combustion engines
19(1)
2.2.2 Steam turbines
20(1)
2.2.3 Gas turbines
21(1)
2.2.4 Combined-cycle power plants
22(1)
2.2.5 Advanced combustion technologies
23(2)
2.3 State-of-the-art energy conversion technologies
25(5)
2.3.1 Stirling engine
25(1)
2.3.2 Nuclear power
26(1)
2.3.3 Fuel cells
26(1)
2.3.4 Thermionic power conversion
27(1)
2.3.5 Thermoelectric generators
28(1)
2.3.6 Magneto-hydrodynamic power generation
29(1)
2.3.7 Waste-to-energy conversion
29(1)
2.4 Renewable energy conversion systems
30(11)
2.4.1 Solar energy conversion systems
30(2)
2.4.2 Bioenergy technologies
32(1)
2.4.3 Wind energy conversion systems
33(1)
2.4.4 Ocean or marine energy technology
33(1)
2.4.5 Geothermal power generation
34(1)
2.4.6 Hydropower generation
35(1)
References
36(3)
Further reading
39(2)
3 Energy demand
M. Hasanuzzaman
M.A. Islam
N.A. Rahim
Yuan Yanping
3.1 Introduction to energy demand
41(1)
3.2 Demand classification
41(2)
3.2.1 Elastic demand
41(1)
3.2.2 Inelastic demand
42(1)
3.2.3 Unit elastic demand
42(1)
3.2.4 Demand curve
43(1)
3.3 Energy demand analysis in different sectors
43(1)
3.4 Building sector energy demand analysis
44(15)
3.4.1 Structural condition
44(1)
3.4.2 Building materials
45(1)
3.4.3 Energy consumption of building systems
46(1)
3.4.4 Air conditioner energy consumption
47(1)
3.4.5 Lighting energy consumption
48(1)
3.4.6 Lift and escalator
49(7)
3.4.7 Energy consumption calculation of ventilation system
56(1)
3.4.8 Household appliances energy consumption
57(1)
3.4.9 Evaluating energy use for small power appliances
57(1)
3.4.10 Building energy index
58(1)
3.4.11 Green building index
59(1)
3.5 Industrial sector
59(17)
3.5.1 Energy-intensive manufacturing (IEO, 2016)
60(1)
3.5.2 Non-energy-intensive manufacturing
61(1)
3.5.3 Nonmanufacturing
61(15)
3.6 Transport sector
76(13)
3.6.1 Calculation based on transport energy rating
76(5)
3.6.2 Calculation based on transport activity
81(3)
References
84(5)
4 Energy supply
M. Hasanuzzaman
Laveet Kumar
4.1 Introduction
89(1)
4.2 Energy supply
90(1)
4.3 Renewable energy supply chain
91(1)
4.3.1 Renewable energy supply chain process flow
92(1)
4.3.2 Renewable energy supply chain limitations and issues
92(1)
4.4 Energy supply indicators for sustainable development
92(3)
4.5 Sustainability indicators of renewable energy technologies
95(3)
4.5.1 Social dimension
95(1)
4.5.2 Environmental dimension
96(1)
4.5.3 Economic dimension
96(2)
4.6 Energy supply forecasting
98(4)
4.6.1 Renewable energy forecasting methodology
98(2)
4.6.2 Renewable energy forecasting: global overview
100(1)
4.6.3 Renewable energy forecasting: 2016--40
101(1)
4.7 Conclusion
102(3)
References
102(1)
Further reading
103(2)
5 Energy demand forecasting
M.A. Islam
Hang Seng Che
M. Hasanuzzaman
N.A. Rahim
5.1 Introduction
105(1)
5.2 Importance of energy demand forecasting
106(1)
5.3 Challenges in energy demand forecasting
107(1)
5.4 Forecasting process
107(2)
5.5 Forecasting methods
109(4)
5.5.1 Averaging method
111(2)
5.5.2 Regression methods
113(1)
5.6 Simple and multiple linear regression
113(2)
5.6.1 Simple linear regression
114(1)
5.6.2 Multiple linear regressions
114(1)
5.7 Multivariate linear regression
115(1)
5.8 Nonlinear regression
115(4)
5.8.1 Autoregressive model
116(1)
5.8.2 Artificial neural networks
117(2)
5.9 Forecast accuracy
119(2)
5.9.1 General metrics of forecasting accuracy
120(1)
5.10 Mean absolute deviation
121(1)
5.11 Mean square error
122(1)
5.12 Mean absolute percent error
122(1)
5.13 Symmetric mean absolute percent error
122(3)
References
123(2)
6 Energy storage technologies
Fayaz Hussain
M. Zillur Rahman
Ashvini Nair Sivasengaran
M. Hasanuzzaman
6.1 Introduction
125(1)
6.2 Battery energy storage technologies
126(16)
6.2.1 Lithium-ion batteries
126(5)
6.2.2 Flow batteries
131(3)
6.2.3 Nickel-based batteries
134(3)
6.2.4 Metal-air batteries
137(1)
6.2.5 Lead-acid batteries
138(1)
6.2.6 Sodium---sulfur batteries
139(1)
6.2.7 Aluminum-ion batteries
140(1)
6.2.8 Copper---zinc batteries
141(1)
6.3 Hydro energy storage
142(9)
6.3.1 General classification of pump hydro energy storage plant
145(1)
6.3.2 Performance analysis of a pump hydro energy storage plant
145(1)
6.3.3 Design considerations for pump hydro energy storage plants
146(3)
6.3.4 Applications of pump hydro energy storage plant
149(2)
6.3.5 Site selection for pump hydro energy storage plant
151(1)
6.4 Thermal energy storage
151(16)
6.4.1 General classification of thermal energy storage system
151(2)
6.4.2 Sensible heat storage
153(2)
6.4.3 Latent heat storage
155(3)
References
158(9)
7 Energy economics
Laveet Kumar
M.A.A. Mamun
M. Hasanuzzaman
7.1 Introduction
167(1)
7.2 Cost concept
167(2)
7.2.1 Fixed and variable costs
167(1)
7.2.2 Breakeven point, profit and loss region
168(1)
7.3 Money value or time value of money
169(2)
7.3.1 Simple interest
169(1)
7.3.2 Compound interest
169(1)
7.3.3 Net present value
170(1)
7.3.4 Internal rate of return
170(1)
7.3.5 Least cost planning (levelized cost)
170(1)
7.3.6 Simple payback period
171(1)
7.4 Business models
171(5)
7.4.1 Demand response and energy management system model
172(1)
7.4.2 Electricity and thermal storage model
172(1)
7.4.3 Solar photovoltaic model
173(1)
7.4.4 Ownership business models
174(1)
7.4.5 Service business models
174(1)
7.4.6 Analysis of business models
175(1)
7.5 Barriers to renewable energy
176(3)
References
177(2)
8 World energy policies
Nur Iqtiyani Ilham
M. Hasanuzzaman
M.A.A. Mamun
8.1 Introduction
179(1)
8.2 Mapping global energy policies
180(5)
8.2.1 America
180(1)
8.2.2 Europe
181(2)
8.2.3 Asia
183(1)
8.2.4 Australia
184(1)
8.2.5 Africa
185(1)
8.3 Government roles in perspective: initiatives and impacts of energy policy
185(14)
8.3.1 Subsidies for renewable energy
185(1)
8.3.2 Feed-in tariffs and net energy metering
186(3)
8.3.3 Monetary incentives
189(1)
8.3.4 Tax exemption
190(3)
8.3.5 Impacts of renewable energy policy
193(1)
References
194(5)
Index 199
Dr. Md. Hasanuzaman is an Associate Professor at the UM Power Energy Dedicated Advanced Centre, Higher Institution Centre of Excellence (HICoE), University of Malaya, Malaysia. He was listed among the World's Top 2% Scientists by Stanford University/Elsevier in 2020, 2021 and 2022. He served as Programme Coordinator of the Master of Renewable Energy, Double Degree Programme with Master of Energy Science, at Kyoto University, Japan from 2012 to 2020. He earned his PhD and an M. Eng. Sc. from the University of Malaya (UM), Malaysia. Dr. Hasans research interests include Thermal Engineering, Renewable Energy, Solar Thermal, Energy and Buildings, Energy Policy, Energy and Environment, Nanotechnology, Transportation and Electric Vehicles. He is an Associate Editor of the Alexandria Engineering Journal and Guest Editor of Renewable Energy, and has published two books, authored numerous book chapters, and is author or co-author of over 130 research papers and 50 conference proceedings. Prof. Ir. Dr. Nasrudin Abd Rahim received his B.Sc. (Hons) in Electrical Electronic Engineering and M.Sc. in Electrical Power Engineering from University of Strathclyde, Glasgow, U.K., in 1985 and 1988, respectively. He received his Ph.D. in Power Electronics from Heriot-Watt University, Edinburgh, U.K., in 1995. He is currently a Professor at the University of Malaya, Kuala Lumpur, Malaysia, and Director/Founder of the UM Power Energy Dedicated Advanced Centre (UMPEDAC), a recognised Higher Institution Centre of Excellence (HICoE) under the Ministry of Higher Education. He is a Distinguished Adjunct Professor of King Abdulaziz University, Jeddah (2012-2017). His research interests include Power electronics and drives, Solar photovoltaic technologies, Real-time control systems, Transportation Demand Side Management, and Energy Policy, with over 400 technical papers in journals and international conference proceedings. Prof. Nasrudin is a Chartered Engineer (U.K.), Fellow of the Institution of Engineering and Technology, U.K. and Senior Member of the Institute of Electrical and Electronics Engineers, USA. He is also a Fellow of the Academy Science and Professional Engineer, Board of Engineering, Malaysia.