Atnaujinkite slapukų nuostatas

Engineering Electromagnetics 4th ed. 2021 [Kietas viršelis]

4.00/5 (14 ratings by Goodreads)
  • Formatas: Hardback, 1028 pages, aukštis x plotis: 279x210 mm, weight: 3274 g, 4 Illustrations, color; 862 Illustrations, black and white; XXVI, 1028 p. 866 illus., 4 illus. in color. With online files/update., 1 Hardback
  • Išleidimo metai: 09-Dec-2020
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030155560
  • ISBN-13: 9783030155568
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 1028 pages, aukštis x plotis: 279x210 mm, weight: 3274 g, 4 Illustrations, color; 862 Illustrations, black and white; XXVI, 1028 p. 866 illus., 4 illus. in color. With online files/update., 1 Hardback
  • Išleidimo metai: 09-Dec-2020
  • Leidėjas: Springer Nature Switzerland AG
  • ISBN-10: 3030155560
  • ISBN-13: 9783030155568
Kitos knygos pagal šią temą:
This comprehensive two semester textbook, now in its 4th edition, continues to provide students with a thorough theoretical understanding of electromagnetic field relations while also providing numerous practical applications. The topics follow a tested pattern familiar to the previous edition, each with a brief, introductory chapter followed by a chapter with extensive treatment, 10 to 30 applications, examples and exercises, and problems and summaries. There is new emphasis on problems, examples and applications based on energy harvesting and renewable energy; additional information on sensing and actuation, new material on issues in energy, power, electronics, and measurements, and an emphasis on aspects of electromagnetics relevant to digital electronics and wireless communication. The author adds and revises problems to emphasize the use of tools such as Matlab; new advanced problems for higher level students; a discussion of symbolic and numerical integration; additional examples with each chapter; and new online material including experiments and review questions. The book is an undergraduate textbook at the upper division level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study.Features hundreds of examples and exercises, many new or revised for every topic in the book.Includes over 650 end-of-chapter problems, many of them new or revised, mostly based on applications or simplified applications.Includes a suite of online demonstration software including a computerized Smith Chart.
1 Vector Algebra
1(46)
1.1 Introduction
1(1)
1.2 Scalars and Vectors
2(8)
1.2.1 Magnitude and Direction of Vectors: The Unit Vector and Components of a Vector
2(4)
1.2.2 Vector Addition and Subtraction
6(4)
1.2.3 Vector Scaling
10(1)
1.3 Products of Vectors
10(11)
1.3.1 The Scalar Product
10(3)
1.3.2 The Vector Product
13(6)
1.3.3 Multiple Vector and Scalar Products
19(2)
1.4 Definition of Fields
21(3)
1.4.1 Scalar Fields
22(1)
1.4.2 Vector Fields
22(2)
1.5 Systems of Coordinates
24(15)
1.5.1 The Cartesian Coordinate System
25(3)
1.5.2 The Cylindrical Coordinate System
28(5)
1.5.3 The Spherical Coordinate System
33(2)
1.5.4 Transformation from Cylindrical to Spherical Coordinates
35(4)
1.6 Position Vectors
39(2)
Problems
41(6)
2 Vector Calculus
47(50)
2.1 Introduction
47(1)
2.2 Integration of Scalar and Vector Functions
47(12)
2.2.1 Line Integrals
48(4)
2.2.2 Surface Integrals
52(4)
2.2.3 Volume Integrals
56(3)
2.2.4 Symbolic Versus Numerical Integration
59(1)
2.3 Differentiation of Scalar and Vector Functions
59(27)
2.3.1 The Gradient of a Scalar Function
60(9)
2.3.2 The Divergence of a Vector Field
69(6)
2.3.3 The Divergence Theorem
75(3)
2.3.4 Circulation of a Vector and the Curl
78(6)
2.3.5 Stokes' Theorem
84(2)
2.4 Conservative and Nonconservative Fields
86(1)
2.5 Null Vector Identities and Classification of Vector Fields
87(4)
2.5.1 The Helmholtz Theorem
88(1)
2.5.2 Second-Order Operators
89(2)
2.5.3 Other Vector Identities
91(1)
Problems
91(6)
3 Coulomb's Law and the Electric Field
97(42)
3.1 Introduction
97(1)
3.2 Charge and Charge Density
98(2)
3.3 Coulomb's Law
100(5)
3.4 The Electric Field Intensity
105(19)
3.4.1 Electric Fields of Point Charges
107(6)
3.4.2 Electric Fields of Charge Distributions
113(11)
3.5 The Electric Flux Density and Electric Flux
124(2)
3.6 Applications
126(4)
3.7 Summary
130(1)
Problems
130(9)
4 Gauss's Law and the Electric Potential
139(90)
4.1 Introduction
139(1)
4.2 The Electrostatic Field: Postulates
139(4)
4.3 Gauss's Law
143(9)
4.3.1 Applications of Gauss's Law
144(8)
4.4 The Electric Potential
152(13)
4.4.1 Electric Potential Due to Point Charges
153(4)
4.4.2 Electric Potential Due to Distributed Charges
157(5)
4.4.3 Calculation of Electric Field Intensity from Potential
162(3)
4.5 Materials in the Electric Field
165(14)
4.5.1 Conductors
165(5)
4.5.2 Dielectric Materials
170(1)
4.5.3 Polarization and the Polarization Vector
170(3)
4.5.4 Electric Flux Density and Permittivity
173(3)
4.5.5 Dielectric Strength
176(3)
4.6 Interface Conditions
179(7)
4.6.1 Interface Conditions Between Two Dielectrics
179(3)
4.6.2 Interface Conditions Between Dielectrics and Conductors
182(4)
4.7 Capacitance
186(11)
4.7.1 The Parallel Plate Capacitor
188(2)
4.7.2 Capacitance of Infinite Structures
190(2)
4.7.3 Connection of Capacitors
192(5)
4.8 Energy in the Electrostatic Field: Point and Distributed Charges
197(12)
4.8.1 Energy in the Electrostatic Field: Field Variables
202(4)
4.8.2 Forces in the Electrostatic Field: The Principle of Virtual Work
206(3)
4.9 Applications
209(3)
4.10 Summary
212(3)
Problems
215(14)
5 Boundary Value Problems: Analytic Methods of Solution
229(56)
5.1 Introduction
229(1)
5.2 Poisson's Equation for the Electrostatic Field
230(1)
5.3 Laplace's Equation for the Electrostatic Field
231(1)
5.4 Solution Methods
231(43)
5.4.1 Uniqueness of Solution
231(1)
5.4.2 Solution by Direct Integration
232(4)
5.4.3 The Method of Images
236(28)
5.4.4 Separation of Variables: Solution to Laplace's Equation
264(10)
5.5 Summary
274(2)
Problems
276(9)
6 Boundary Value Problems: Numerical (Approximate) Methods
285(50)
6.1 Introduction
285(1)
6.1.1 A Note on Scripts and Computer Programs
286(1)
6.2 The General Idea of Numerical Solutions
286(1)
6.3 The Finite Difference Method: Solution to the Laplace and Poisson Equations
287(14)
6.3.1 The Finite Difference Approximation: First-Order Derivative
287(1)
6.3.2 The Finite Difference Approximation: Second-Order Derivative
288(3)
6.3.3 Implementation
291(5)
6.3.4 Solution to Poisson's Equation
296(5)
6.4 The Method of Moments: An Intuitive Approach
301(11)
6.5 The Finite Element Method: Introduction
312(14)
6.5.1 The Finite Element
313(3)
6.5.2 Implementation of the Finite Element Method
316(10)
6.6 Summary
326(2)
Problems
328(7)
7 The Steady Electric Current
335(42)
7.1 Introduction
335(1)
7.2 Conservation of Charge
336(1)
7.3 Conductors, Dielectrics, and Lossy Dielectrics
336(7)
7.3.1 Moving Charges in an Electric Field
336(1)
7.3.2 Convection Current and Convection Current Density
336(5)
7.3.3 Conduction Current and Conduction Current Density
341(2)
7.4 Ohm's Law
343(4)
7.5 Power Dissipation and Joule's Law
347(4)
7.6 The Continuity Equation and Kirchhoff's Current Law
351(5)
7.6.1 Kirchhoff's Current Law
352(4)
7.7 Current Density as a Field
356(4)
7.7.1 Sources of Steady Currents
358(1)
7.7.2 Kirchhoff's Voltage Law
359(1)
7.8 Interface Conditions for Current Density
360(4)
7.9 Applications
364(3)
7.10 Summary
367(1)
Problems
368(9)
8 The Static Magnetic Field
377(42)
8.1 Introduction
377(1)
8.2 The Magnetic Field, Magnetic Field Intensity, and Magnetic Flux Density
378(2)
8.3 The Biot-Savart Law
380(9)
8.3.1 Applications of the Biot-Savart Law to Distributed Currents
386(3)
8.4 Ampere's Law
389(6)
8.5 Magnetic Flux Density and Magnetic Flux
395(2)
8.6 Postulates of the Static Magnetic Field
397(2)
8.7 Potential Functions
399(9)
8.7.1 The Magnetic Vector Potential
399(7)
8.7.2 The Magnetic Scalar Potential
406(2)
8.8 Applications
408(1)
8.9 Summary
409(1)
Problems
410(9)
9 Magnetic Materials and Properties
419(86)
9.1 Introduction
419(2)
9.2 Magnetic Properties of Materials
421(19)
9.2.1 The Magnetic Dipole
421(5)
9.2.2 Magnetization: A Model of Magnetic Properties of Materials
426(8)
9.2.3 Behavior of Magnetic Materials
434(6)
9.3 Magnetic Interface Conditions
440(5)
9.3.1 Interface Conditions for the Tangential and Normal Components of the Magnetic Field Intensity H
440(5)
9.4 Inductance and Inductors
445(11)
9.4.1 Inductance per Unit Length
452(1)
9.4.2 External and Internal Inductance
453(3)
9.5 Energy Stored in the Magnetic Field
456(10)
9.5.1 Magnetostatic Energy in Terms of Fields
461(5)
9.6 Magnetic Circuits
466(5)
9.7 Forces in the Magnetic Field
471(10)
9.7.1 Principle of Virtual Work: Energy in a Gap
478(3)
9.8 Torque
481(3)
9.9 Applications
484(3)
9.10 Summary
487(2)
Problems
489(16)
10 Faraday's Law and Induction
505(46)
10.1 Introduction
505(1)
10.2 Faraday's Law
506(2)
10.3 Lenz's Law
508(1)
10.4 Motional Electromotive Force: The DC Generator
509(5)
10.5 Induced emf Due to Transformer Action
514(2)
10.6 Combined Motional and Transformer Action Electromotive Force
516(8)
10.6.1 The Alternating Current Generator
516(8)
10.7 The Transformer
524(7)
10.7.1 The Ideal Transformer
524(1)
10.7.2 The Real Transformer: Finite Permeability
525(2)
10.7.3 The Real Transformer: Finite Permeability and Flux Leakage
527(4)
10.8 Eddy Currents
531(3)
10.9 Applications
534(7)
10.10 Summary
541(1)
Problems
542(9)
11 Maxwell's Equations
551(32)
11.1 Introduction: The Electromagnetic Field
551(1)
11.2 Maxwell's Equations
552(7)
11.2.1 Maxwell's Equations in Differential Form
553(3)
11.2.2 Maxwell's Equations in Integral Form
556(3)
11.3 Time-Dependent Potential Functions
559(4)
11.3.1 Scalar Potentials
559(1)
11.3.2 The Magnetic Vector Potential
560(1)
11.3.3 Other Potential Functions
561(2)
11.4 Interface Conditions for the Electromagnetic Field
563(6)
11.4.1 Interface Conditions for the Electric Field
564(1)
11.4.2 Interface Conditions for the Magnetic Field
565(4)
11.5 Particular Forms of Maxwell's Equations
569(5)
11.5.1 Time-Harmonic Representation
569(3)
11.5.2 Maxwell's Equations: The Time-Harmonic Form
572(1)
11.5.3 Source-Free Equations
573(1)
11.6 Summary
574(1)
Problems
575(8)
12 Electromagnetic Waves and Propagation
583(68)
12.1 Introduction
583(1)
12.2 The Wave
583(5)
12.3 The Electromagnetic Wave Equation and Its Solution
588(13)
12.3.1 The Time-Dependent Wave Equation
588(2)
12.3.2 Time-Harmonic Wave Equations
590(2)
12.3.3 Solution of the Wave Equation
592(1)
12.3.4 Solution for Uniform Plane Waves
592(1)
12.3.5 The One-Dimensional Wave Equation in Free-Space and Perfect Dielectrics
593(8)
12.4 The Electromagnetic Spectrum
601(2)
12.5 The Poynting Theorem and Electromagnetic Power
603(8)
12.6 The Complex Poynting Vector
611(3)
12.7 Propagation of Plane Waves in Materials
614(17)
12.7.1 Propagation of Plane Waves in Lossy Dielectrics
614(5)
12.7.2 Propagation of Plane Waves in Low-Loss Dielectrics
619(3)
12.7.3 Propagation of Plane Waves in Conductors
622(5)
12.7.4 The Speed of Propagation of Waves and Dispersion
627(4)
12.8 Polarization of Plane Waves
631(5)
12.8.1 Linear Polarization
632(1)
12.8.2 Elliptical and Circular Polarization
632(4)
12.9 Applications
636(2)
12.10 Summary
638(3)
Problems
641(10)
13 Reflection and Transmission of Plane Waves
651(58)
13.1 Introduction
651(1)
13.2 Reflection and Transmission at a General Dielectric Interface: Normal Incidence
652(19)
13.2.1 Reflection and Transmission at an Air-Lossy Dielectric Interface: Normal Incidence
658(3)
13.2.2 Reflection and Transmission at an Air-Lossless Dielectric Interface: Normal Incidence
661(1)
13.2.3 Reflection and Transmission at an Air-Conductor Interface: Normal Incidence
662(9)
13.3 Reflection and Transmission at an Interface: Oblique Incidence on a Perfect Conductor
671(6)
13.3.1 Oblique Incidence on a Perfectly Conducting Interface: Perpendicular Polarization
671(4)
13.3.2 Oblique Incidence on a Perfectly Conducting Interface: Parallel Polarization
675(2)
13.4 Oblique Incidence on Dielectric Interfaces
677(13)
13.4.1 Oblique Incidence on a Dielectric Interface: Perpendicular Polarization
677(3)
13.4.2 Oblique Incidence on a Dielectric Interface: Parallel Polarization
680(5)
13.4.3 Brewster's Angle
685(2)
13.4.4 Total Reflection
687(3)
13.5 Reflection and Transmission for Layered Materials at Normal Incidence
690(5)
13.6 Applications
695(3)
13.7 Summary
698(2)
Problems
700(9)
14 Theory of Transmission Lines
709(66)
14.1 Introduction
709(2)
14.2 The Transmission Line
711(1)
14.3 Transmission Line Parameters
712(7)
14.3.1 Calculation of Line Parameters
713(6)
14.4 The Transmission Line Equations
719(4)
14.5 Types of Transmission Lines
723(8)
14.5.1 The Lossless Transmission Line
723(2)
14.5.2 The Long Transmission Line
725(2)
14.5.3 The Distortionless Transmission Line
727(2)
14.5.4 The Low-Resistance Transmission Line
729(2)
14.6 The Field Approach to Transmission Lines
731(3)
14.7 Finite Transmission Lines
734(17)
14.7.1 The Load Reflection Coefficient
736(2)
14.7.2 Line Impedance and the Generalized Reflection Coefficient
738(3)
14.7.3 The Lossless, Terminated Transmission Line
741(4)
14.7.4 The Lossless, Matched Transmission Line
745(1)
14.7.5 The Lossless, Shorted Transmission Line
746(1)
14.7.6 The Lossless, Open Transmission Line
747(1)
14.7.7 The Lossless, Resistively Loaded Transmission Line
748(3)
14.8 Power Relations on a General Transmission Line
751(3)
14.9 Resonant Transmission Line Circuits
754(3)
14.10 Applications
757(2)
14.11 Summary
759(4)
Problems
763(12)
15 The Smith Chart, Impedance Matching, and Transmission Line Circuits
775(38)
15.1 Introduction
775(1)
15.2 The Smith Chart
776(8)
15.3 The Smith Chart as an Admittance Chart
784(3)
15.4 Impedance Matching and the Smith Chart
787(15)
15.4.1 Impedance Matching
787(1)
15.4.2 Stub Matching
788(14)
15.5 Quarter-Wavelength Transformer Matching
802(4)
15.6 Summary
806(2)
Problems
808(5)
16 Transients on Transmission Lines
813(36)
16.1 Introduction
813(1)
16.2 Propagation of Narrow Pulses on Finite, Lossless Transmission Lines
814(3)
16.3 Propagation of Narrow Pulses on Finite, Distortionless Transmission Lines
817(4)
16.4 Transients on Transmission Lines: Long Pulses
821(6)
16.5 Transients on Transmission Lines: Finite-Length Pulses
827(3)
16.6 Reflections from Discontinuities
830(3)
16.7 Transients on Lines with Reactive Loading
833(5)
16.7.1 Capacitive Loading
834(2)
16.7.2 Inductive Loading
836(2)
16.8 Initial Conditions on Transmission Lines
838(3)
16.9 Summary
841(3)
Problems
844(5)
17 Waveguides and Resonators
849(66)
17.1 Introduction
849(1)
17.2 The Concept of a Waveguide
850(1)
17.3 Transverse Electromagnetic, Transverse Electric, and Transverse Magnetic Waves
850(9)
17.3.1 Transverse Electromagnetic Waves
852(1)
17.3.2 Transverse Electric (TE) Waves
853(4)
17.3.3 Transverse Magnetic (TM) Waves
857(2)
17.4 TE Propagation in Parallel Plate Waveguides
859(9)
17.5 TM Propagation in Parallel Plate Waveguides
868(5)
17.6 TEM Waves in Parallel Plate Waveguides
873(1)
17.7 Rectangular Waveguides
874(20)
17.7.1 TM Modes in Rectangular Waveguides
875(7)
17.7.2 TE Modes in Rectangular Waveguides
882(7)
17.7.3 Attenuation and Losses in Rectangular Waveguides
889(5)
17.8 Other Waveguides
894(1)
17.9 Cavity Resonators
895(6)
17.9.1 TM Modes in Cavity Resonators
896(2)
17.9.2 TE Modes in Cavity Resonators
898(3)
17.10 Energy Relations in a Cavity Resonator
901(1)
17.11 Quality Factor of a Cavity Resonator
901(1)
17.12 Applications
902(3)
17.13 Summary
905(3)
Problems
908(7)
18 Antennas and Electromagnetic Radiation
915(78)
18.1 Introduction
915(1)
18.2 Electromagnetic Radiation and Radiation Safety
915(2)
18.3 Antennas
917(1)
18.4 The Electric Dipole
917(9)
18.4.1 The Near Field
921(1)
18.4.2 The Far Field
922(4)
18.5 Properties of Antennas
926(9)
18.5.1 Radiated Power
926(1)
18.5.2 Radiation Resistance
927(1)
18.5.3 Antenna Radiation Patterns
928(4)
18.5.4 Radiation Intensity and Average Radiation Intensity
932(1)
18.5.5 Antenna Directivity
933(1)
18.5.6 Antenna Gain and Radiation Efficiency
934(1)
18.6 The Magnetic Dipole
935(6)
18.6.1 Near Fields for the Magnetic Dipole
938(1)
18.6.2 Far Fields for the Magnetic Dipole
938(1)
18.6.3 Properties of the Magnetic Dipole
939(2)
18.7 Practical Antennas
941(12)
18.7.1 Linear Antennas of Arbitrary Length
942(9)
18.7.2 The Monopole Antenna
951(2)
18.8 Antenna Arrays
953(13)
18.8.1 The Two-Element Array
955(7)
18.8.2 The n-Element Linear Array
962(4)
18.9 Reciprocity and Receiving Antennas
966(1)
18.10 Effective Aperture
967(6)
18.11 The Radar
973(4)
18.11.1 Types of Radar
975(2)
18.12 Other Antennas
977(1)
18.13 Applications
977(1)
18.14 Summary
978(4)
Problems
982(11)
Answers 993(20)
Appendix: Summary of Vector Relations and Physical Constants 1013(2)
Index 1015
Nathan Ida is the Distinguished Professor of Electrical and Computer Engineering at the University of Akron. He is the author of five previous books in the area of electromagnetics and over 250 journal and conference papers. A Fellow of the IEEE and the American Society for non-destructive testing, he is active in numerous conferences and symposia that emphasize interdisciplinary research and practical applications.