Atnaujinkite slapukų nuostatas

El. knyga: Engineering Electromagnetics

4.00/5 (14 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-Mar-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319078069
  • Formatas: PDF+DRM
  • Išleidimo metai: 20-Mar-2015
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319078069

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems and summaries.

The new edition includes: modifications to about 30-40% of the end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The wealth of examples and alternative explanations makes it very approachable by students.









More than 400 examples and exercises, exercising every topic in the book

Includes 600 end-of-chapter problems, many of them applications or simplified applications

Discusses the finite element, finite difference and method of moments in a dedicated chapter
1 Vector Algebra
1(44)
1.1 Introduction
1(1)
1.2 Scalars and Vectors
2(8)
1.2.1 Magnitude and Direction of Vectors: The Unit Vector and Components of a Vector
2(4)
1.2.2 Vector Addition and Subtraction
6(4)
1.2.3 Vector Scaling
10(1)
1.3 Products of Vectors
10(11)
1.3.1 The Scalar Product
10(3)
1.3.2 The Vector Product
13(5)
1.3.3 Multiple Vector and Scalar Products
18(3)
1.4 Definition of Fields
21(3)
1.4.1 Scalar Fields
21(1)
1.4.2 Vector Fields
22(2)
1.5 Systems of Coordinates
24(14)
1.5.1 The Cartesian Coordinate System
24(3)
1.5.2 The Cylindrical Coordinate System
27(5)
1.5.3 The Spherical Coordinate System
32(2)
1.5.4 Transformation from Cylindrical to Spherical Coordinates
34(4)
1.6 Position Vectors
38(7)
Problems
40(5)
2 Vector Calculus
45(50)
2.1 Introduction
45(1)
2.2 Integration of Scalar and Vector Functions
45(12)
2.2.1 Line Integrals
46(4)
2.2.2 Surface Integrals
50(4)
2.2.3 Volume Integrals
54(3)
2.3 Differentiation of Scalar and Vector Functions
57(28)
2.3.1 The Gradient of a Scalar Function
57(10)
2.3.2 The Divergence of a Vector Field
67(6)
2.3.3 The Divergence Theorem
73(3)
2.3.4 Circulation of a Vector and the Curl
76(7)
2.3.5 Stokes' Theorem
83(2)
2.4 Conservative and Nonconservative Fields
85(1)
2.5 Null Vector Identities and Classification of Vector Fields
85(10)
2.5.1 The Helmholtz Theorem
87(1)
2.5.2 Second-Order Operators
88(1)
2.5.3 Other Vector Identities
89(1)
Problems
90(5)
3 Coulomb's Law and the Electric Field
95(44)
3.1 Introduction
95(1)
3.2 Charge and Charge Density
96(2)
3.3 Coulomb's Law
98(5)
3.4 The Electric Field Intensity
103(19)
3.4.1 Electric Fields of Point Charges
105(6)
3.4.2 Electric Fields of Charge Distributions
111(11)
3.5 The Electric Flux Density and Electric Flux
122(2)
3.6 Applications
124(4)
3.7 Experiments
128(1)
3.8 Summary
129(10)
Problems
130(9)
4 Gauss's Law and the Electric Potential
139(92)
4.1 Introduction
139(1)
4.2 The Electrostatic Field: Postulates
139(4)
4.3 Gauss's Law
143(9)
4.3.1 Applications of Gauss's Law
144(8)
4.4 The Electric Potential
152(14)
4.4.1 Electric Potential Due to Point Charges
154(3)
4.4.2 Electric Potential Due to Distributed Charges
157(6)
4.4.3 Calculation of Electric Field Intensity from Potential
163(3)
4.5 Materials in the Electric Field
166(13)
4.5.1 Conductors
166(4)
4.5.2 Dielectric Materials
170(1)
4.5.3 Polarization and the Polarization Vector
170(3)
4.5.4 Electric Flux Density and Permittivity
173(4)
4.5.5 Dielectric Strength
177(2)
4.6 Interface Conditions
179(7)
4.6.1 Interface Conditions Between Two Dielectrics
179(3)
4.6.2 Interface Conditions Between Dielectrics and Conductors
182(4)
4.7 Capacitance
186(11)
4.7.1 The Parallel Plate Capacitor
188(2)
4.7.2 Capacitance of Infinite Structures
190(2)
4.7.3 Connection of Capacitors
192(5)
4.8 Energy in the Electrostatic Field: Point and Distributed Charges
197(12)
4.8.1 Energy in the Electrostatic Field: Field Variables
203(3)
4.8.2 Forces in the Electrostatic Field: The Principle of Virtual Work
206(3)
4.9 Applications
209(4)
4.10 Experiments
213(1)
4.11 Summary
214(17)
Problems
217(14)
5 Boundary Value Problems: Analytic Methods of Solution
231(58)
5.1 Introduction
231(1)
5.2 Poisson's Equation for the Electrostatic Field
232(1)
5.3 Laplace's Equation for the Electrostatic Field
233(1)
5.4 Solution Methods
233(45)
5.4.1 Uniqueness of Solution
233(1)
5.4.2 Solution by Direct Integration
234(4)
5.4.3 The Method of Images
238(30)
5.4.4 Separation of Variables: Solution to Laplace's Equation
268(10)
5.5 Experiments: The Method of Images
278(1)
5.6 Summary
278(11)
Problems
280(9)
6 Boundary Value Problems: Numerical (Approximate) Methods
289(50)
6.1 Introduction
289(1)
6.1.1 A Note on Computer Programs
290(1)
6.2 The General Idea of Numerical Solutions
290(1)
6.3 The Finite Difference Method: Solution to the Laplace and Poisson Equations
291(13)
6.3.1 The Finite Difference Approximation: First-Order Derivative
291(1)
6.3.2 The Finite Difference Approximation: Second-Order Derivative
292(2)
6.3.3 Implementation
294(6)
6.3.4 Solution to Poisson's Equation
300(4)
6.4 The Method of Moments: An Intuitive Approach
304(12)
6.5 The Finite Element Method: Introduction
316(14)
6.5.1 The Finite Element
317(3)
6.5.2 Implementation of the Finite Element Method
320(10)
6.6 Summary
330(9)
Problems
332(7)
7 The Steady Electric Current
339(44)
7.1 Introduction
339(1)
7.2 Conservation of Charge
340(1)
7.3 Conductors, Dielectrics, and Lossy Dielectrics
340(7)
7.3.1 Moving Charges in an Electric Field
340(1)
7.3.2 Convection Current and Convection Current Density
340(5)
7.3.3 Conduction Current and Conduction Current Density
345(2)
7.4 Ohm's Law
347(4)
7.5 Power Dissipation and Joule's Law
351(4)
7.6 The Continuity Equation and Kirchhoff's Current Law
355(5)
7.6.1 Kirchhoff's Current Law
356(4)
7.7 Current Density as a Field
360(4)
7.7.1 Sources of Steady Currents
362(1)
7.7.2 Kirchhoff's Voltage Law
363(1)
7.8 Interface Conditions for Current Density
364(5)
7.9 Applications
369(3)
7.10 Experiments
372(2)
7.11 Summary
374(9)
Problems
375(8)
8 The Static Magnetic Field
383(44)
8.1 Introduction
383(1)
8.2 The Magnetic Field, Magnetic Field Intensity, and Magnetic Flux Density
384(2)
8.3 The Biot--Savart Law
386(10)
8.3.1 Applications of the Biot-Savart Law to Distributed Currents
393(3)
8.4 Ampere's Law
396(5)
8.5 Magnetic Flux Density and Magnetic Flux
401(2)
8.6 Postulates of the Static Magnetic Field
403(2)
8.7 Potential Functions
405(10)
8.7.1 The Magnetic Vector Potential
405(8)
8.7.2 The Magnetic Scalar Potential
413(2)
8.8 Applications
415(1)
8.9 Experiments
416(1)
8.10 Summary
417(10)
Problems
418(9)
9 Magnetic Materials and Properties
427(88)
9.1 Introduction
427(2)
9.2 Magnetic Properties of Materials
429(19)
9.2.1 The Magnetic Dipole
429(5)
9.2.2 Magnetization: A Model of Magnetic Properties of Materials
434(8)
9.2.3 Behavior of Magnetic Materials
442(6)
9.3 Magnetic Interface Conditions
448(5)
9.3.1 Interface Conditions for the Tangential and Normal Components of the Magnetic Field Intensity H
448(5)
9.4 Inductance and Inductors
453(12)
9.4.1 Inductance per Unit Length
461(1)
9.4.2 External and Internal Inductance
462(3)
9.5 Energy Stored in the Magnetic Field
465(10)
9.5.1 Magnetostatic Energy in Terms of Fields
470(5)
9.6 Magnetic Circuits
475(5)
9.7 Forces in the Magnetic Field
480(11)
9.7.1 Principle of Virtual Work: Energy in a Gap
488(3)
9.8 Torque
491(3)
9.9 Applications
494(3)
9.10 Experiments
497(1)
9.11 Summary
498(17)
Problems
500(15)
10 Faraday's Law and Induction
515(50)
10.1 Introduction
515(1)
10.2 Faraday's Law
516(2)
10.3 Lenz's Law
518(1)
10.4 Motional Electromotive Force: The DC Generator
519(5)
10.5 Induced emf Due to Transformer Action
524(2)
10.6 Combined Motional and Transformer Action Electromotive Force
526(8)
10.6.1 The Alternating Current Generator
526(8)
10.7 The Transformer
534(8)
10.7.1 The Ideal Transformer
534(2)
10.7.2 The Real Transformer: Finite Permeability
536(1)
10.7.3 The Real Transformer: Finite Permeability and Flux Leakage
537(5)
10.8 Eddy Currents
542(3)
10.9 Applications
545(6)
10.10 Experiments
551(3)
10.11 Summary
554(11)
Problems
555(10)
11 Maxwell's Equations
565(32)
11.1 Introduction: The Electromagnetic Field
565(1)
11.2 Maxwell's Equations
566(7)
11.2.1 Maxwell's Equations in Differential Form
567(3)
11.2.2 Maxwell's Equations in Integral Form
570(3)
11.3 Time-Dependent Potential Functions
573(4)
11.3.1 Scalar Potentials
574(1)
11.3.2 The Magnetic Vector Potential
574(2)
11.3.3 Other Potential Functions
576(1)
11.4 Interface Conditions for the Electromagnetic Field
577(6)
11.4.1 Interface Conditions for the Electric Field
578(1)
11.4.2 Interface Conditions for the Magnetic Field
579(4)
11.5 Particular Forms of Maxwell's Equations
583(5)
11.5.1 Time-Harmonic Representation
583(3)
11.5.2 Maxwell's Equations: The Time-Harmonic Form
586(1)
11.5.3 Source-Free Equations
587(1)
11.6 Summary
588(9)
Problems
589(8)
12 Electromagnetic Waves and Propagation
597(68)
12.1 Introduction
597(1)
12.2 The Wave
597(5)
12.3 The Electromagnetic Wave Equation and Its Solution
602(13)
12.3.1 The Time-Dependent Wave Equation
602(2)
12.3.2 Time-Harmonic Wave Equations
604(2)
12.3.3 Solution of the Wave Equation
606(1)
12.3.4 Solution for Uniform Plane Waves
606(1)
12.3.5 The One-Dimensional Wave Equation in Free-Space and Perfect Dielectrics
607(8)
12.4 The Electromagnetic Spectrum
615(2)
12.5 The Poynting Theorem and Electromagnetic Power
617(8)
12.6 The Complex Poynting Vector
625(3)
12.7 Propagation of Plane Waves in Materials
628(17)
12.7.1 Propagation of Plane Waves in Lossy Dielectrics
628(5)
12.7.2 Propagation of Plane Waves in Low-Loss Dielectrics
633(3)
12.7.3 Propagation of Plane Waves in Conductors
636(5)
12.7.4 The Speed of Propagation of Waves and Dispersion
641(4)
12.8 Polarization of Plane Waves
645(5)
12.8.1 Linear Polarization
646(1)
12.8.2 Elliptical and Circular Polarization
646(4)
12.9 Applications
650(2)
12.10 Experiments
652(1)
12.11 Summary
653(12)
Problems
656(9)
13 Reflection and Transmission of Plane Waves
665(60)
13.1 Introduction
665(1)
13.2 Reflection and Transmission at a General Dielectric Interface: Normal Incidence
666(19)
13.2.1 Reflection and Transmission at an Air-Lossy Dielectric Interface: Normal Incidence
672(3)
13.2.2 Reflection and Transmission at an Air-Lossless Dielectric Interface: Normal Incidence
675(1)
13.2.3 Reflection and Transmission at an Air-Conductor Interface: Normal Incidence
676(9)
13.3 Reflection and Transmission at an Interface: Oblique Incidence on a Conductor
685(7)
13.3.1 Oblique Incidence on a Conducting Interface: Perpendicular Polarization
685(5)
13.3.2 Oblique Incidence on a Conducting Interface: Parallel Polarization
690(2)
13.4 Oblique Incidence on Dielectric Interfaces
692(14)
13.4.1 Oblique Incidence on a Dielectric Interface: Perpendicular Polarization
692(4)
13.4.2 Oblique Incidence on a Dielectric Interface: Parallel Polarization
696(5)
13.4.3 Brewster's Angle
701(2)
13.4.4 Total Reflection
703(3)
13.5 Reflection and Transmission for Layered Materials at Normal Incidence
706(5)
13.6 Applications
711(3)
13.7 Experiments
714(1)
13.8 Summary
714(11)
Problems
717(8)
14 Theory of Transmission Lines
725(68)
14.1 Introduction
725(2)
14.2 The Transmission Line
727(1)
14.3 Transmission Line Parameters
728(7)
14.3.1 Calculation of Line Parameters
729(6)
14.4 The Transmission Line Equations
735(5)
14.4.1 Time-Domain Transmission Line Equations
739(1)
14.5 Types of Transmission Lines
740(8)
14.5.1 The Lossless Transmission Line
740(2)
14.5.2 The Long Transmission Line
742(2)
14.5.3 The Distortionless Transmission Line
744(2)
14.5.4 The Low-Resistance Transmission Line
746(2)
14.6 The Field Approach to Transmission Lines
748(3)
14.7 Finite Transmission Lines
751(17)
14.7.1 The Load Reflection Coefficient
753(2)
14.7.2 Line Impedance and the Generalized Reflection Coefficient
755(3)
14.7.3 The Lossless, Terminated Transmission Line
758(5)
14.7.4 The Lossless, Matched Transmission Line
763(1)
14.7.5 The Lossless, Shorted Transmission Line
764(1)
14.7.6 The Lossless, Open Transmission Line
765(1)
14.7.7 The Lossless, Resistively Loaded Transmission Line
766(2)
14.8 Power Relations on a General Transmission Line
768(3)
14.9 Resonant Transmission Line Circuits
771(4)
14.10 Applications
775(2)
14.11 Experiment
777(1)
14.12 Summary
777(16)
Problems
781(12)
15 The Smith Chart, Impedance Matching, and Transmission Line Circuits
793(40)
15.1 Introduction
793(1)
15.2 The Smith Chart
794(8)
15.3 The Smith Chart as an Admittance Chart
802(3)
15.4 Impedance Matching and the Smith Chart
805(16)
15.4.1 Impedance Matching
805(1)
15.4.2 Stub Matching
806(15)
15.5 Quarter-Wavelength Transformer Matching
821(4)
15.6 Experiments
825(1)
15.7 Summary
825(8)
Problems
827(6)
16 Transients on Transmission Lines
833(36)
16.1 Introduction
833(1)
16.2 Propagation of Narrow Pulses on Finite, Lossless Transmission Lines
834(4)
16.3 Propagation of Narrow Pulses on Finite, Distortionless Transmission Lines
838(3)
16.4 Transients on Transmission Lines: Long Pulses
841(6)
16.5 Transients on Transmission Lines: Finite-Length Pulses
847(3)
16.6 Reflections from Discontinuities
850(4)
16.7 Transients on Lines with Reactive Loading
854(5)
16.7.1 Capacitive Loading
854(2)
16.7.2 Inductive Loading
856(3)
16.8 Initial Conditions on Transmission Lines
859(3)
16.9 Experiments
862(1)
16.10 Summary
863(6)
Problems
865(4)
17 Waveguides and Resonators
869(66)
17.1 Introduction
869(1)
17.2 The Concept of a Waveguide
870(1)
17.3 Transverse Electromagnetic, Transverse Electric, and Transverse Magnetic Waves
870(10)
17.3.1 Transverse Electromagnetic Waves
872(1)
17.3.2 Transverse Electric (TE) Waves
873(4)
17.3.3 Transverse Magnetic (TM) Waves
877(3)
17.4 TE Propagation in Parallel Plate Waveguides
880(9)
17.5 TM Propagation in Parallel Plate Waveguides
889(5)
17.6 TEM Waves in Parallel Plate Waveguides
894(1)
17.7 Rectangular Waveguides
895(20)
17.7.1 TM Modes in Rectangular Waveguides
896(7)
17.7.2 TE Modes in Rectangular Waveguides
903(7)
17.7.3 Attenuation and Losses in Rectangular Waveguides
910(5)
17.8 Other Waveguides
915(1)
17.9 Cavity Resonators
915(7)
17.9.1 TM Modes in Cavity Resonators
916(3)
17.9.2 TE Modes in Cavity Resonators
919(3)
17.10 Energy Relations in a Cavity Resonator
922(1)
17.11 Quality Factor of a Cavity Resonator
922(1)
17.12 Applications
923(2)
17.13 Summary
925(10)
Problems
929(6)
18 Antennas and Electromagnetic Radiation
935(76)
18.1 Introduction
935(1)
18.2 Electromagnetic Radiation and Radiation Safety
935(1)
18.3 Antennas
936(1)
18.4 The Electric Dipole
937(9)
18.4.1 The Near Field
941(1)
18.4.2 The Far Field
942(4)
18.5 Properties of Antennas
946(9)
18.5.1 Radiated Power
946(1)
18.5.2 Radiation Resistance
947(2)
18.5.3 Antenna Radiation Patterns
949(3)
18.5.4 Radiation Intensity and Average Radiation Intensity
952(1)
18.5.5 Antenna Directivity
953(1)
18.5.6 Antenna Gain and Radiation Efficiency
954(1)
18.6 The Magnetic Dipole
955(6)
18.6.1 Near Fields for the Magnetic Dipole
958(1)
18.6.2 Far Fields for the Magnetic Dipole
958(1)
18.6.3 Properties of the Magnetic Dipole
959(2)
18.7 Practical Antennas
961(12)
18.7.1 Linear Antennas of Arbitrary Length
962(9)
18.7.2 The Monopole Antenna
971(2)
18.8 Antenna Arrays
973(13)
18.8.1 The Two-Element Array
975(7)
18.8.2 The w-Element Linear Array
982(4)
18.9 Reciprocity and Receiving Antennas
986(1)
18.10 Effective Aperture
987(5)
18.11 The Radar
992(4)
18.11.1 Types of Radar
995(1)
18.12 Other Antennas
996(1)
18.13 Applications
996(1)
18.14 Summary
997(14)
Problems
1001(10)
Answers 1011(20)
Appendix: Summary of Vector Relations and Physical Constants 1031(2)
Index 1033
Nathan Ida is a Professor of Electrical and Computer Engineering at the University of Akron.