Atnaujinkite slapukų nuostatas

Enumerative Combinatorics: Volume 1 [Kietas viršelis]

(Massachusetts Institute of Technology), Foreword by
  • Formatas: Hardback, 340 pages, aukštis x plotis x storis: 229x152x22 mm, weight: 670 g, 131 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 13-Apr-1997
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521553091
  • ISBN-13: 9780521553094
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 340 pages, aukštis x plotis x storis: 229x152x22 mm, weight: 670 g, 131 Line drawings, unspecified
  • Serija: Cambridge Studies in Advanced Mathematics
  • Išleidimo metai: 13-Apr-1997
  • Leidėjas: Cambridge University Press
  • ISBN-10: 0521553091
  • ISBN-13: 9780521553094
Kitos knygos pagal šią temą:
This book is the first of a two-volume basic introduction to enumerative combinatorics at a level suitable for graduate students and research mathematicians. It concentrates on the theory and application of generating functions, a fundamental tool in enumerative combinatorics. The book covers those parts of enumerative combinatorics of greatest applicability to other areas of mathematics. The four chapters are devoted to an introduction to enumeration (suitable for advanced undergraduates), sieve methods (including the Principle of Inclusion-Exclusion), partially ordered sets, and rational generating functions. There are a large number of exercises, almost all with solutions, which greatly augment the text and provide entry into many areas not covered directly. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.

Recenzijos

Review of the hardback: 'Stanley's book is very readable and a mine of information.' E. Keith Lloyd, Journal of the LMS 'This book is already a classic a most instructive text, which is sheer delight to read and study. I am looking forward to the publication of the long awaited Enumerative Combinatorics, Vol. II.' C. Krattenthaler

Daugiau informacijos

An introduction, suitable for graduate students, showing connections to other areas of mathematics.
Notation xi
What Is Enumerative Combinatorics?
1(63)
How to Count
1(12)
Sets and Multisets
13(4)
Permutation Statistics
17(14)
The Twelvefold Way
31(33)
Notes
40(2)
References
42(1)
A Note about the Exercises
42(1)
Exercises
43(8)
Solution to Exercises
51(13)
Sieve Methods
64(32)
Inclusion--Exclusion
64(3)
Examples and Special Cases
67(4)
Permutations with Restricted Positions
71(3)
Ferrers Boards
74(2)
V-partitions and Unimodal Sequences
76(3)
Involutions
79(3)
Determinants
82(14)
Notes
85(1)
References
85(1)
Exercises
86(4)
Solutions to Exercises
90(6)
Partially Ordered Sets
96(106)
Basic Concepts
96(4)
New Posets from Old
100(2)
Lattices
102(3)
Distributive Lattices
105(5)
Chains in Distributive Lattices
110(3)
The Incidence Algebra of a Locally Finite Poset
113(3)
The Mobius Inversion Formula
116(1)
Techniques for Computing Mobius Functions
117(7)
Lattices and Their Mobius Algebras
124(2)
The Mobius Function of a Semimodular Lattice
126(3)
Zeta Polynomials
129(2)
Rank-selection
131(2)
R-labelings
133(2)
Eulerian Posets
135(5)
Binomial Posets and Generating Functions
140(7)
An Application to Permutation Enumeration
147(55)
Notes
149(3)
References
152(1)
Exercises
153(21)
Solutions to Exercises
174(28)
Rational Generating Functions
202(91)
Rational Power Series in One Variable
202(2)
Further Ramifications
204(4)
Polynomials
208(2)
Quasi-polynomials
210(1)
P-partitions
211(10)
Linear Homogeneous Diophantine Equations
221(20)
The Transfer-matrix Method
241(52)
Notes
260(3)
References
263(1)
Exercises
264(11)
Solutions to Exercises
275(18)
Appendix Graph Theory Terminology 293(3)
Index 296(11)
Supplementary Problems 307(12)
Errata and Addenda 319