Atnaujinkite slapukų nuostatas

Environmental Microbiology and Microbial Ecology [Kietas viršelis]

  • Formatas: Hardback, 464 pages, aukštis x plotis x storis: 257x185x28 mm, weight: 1134 g
  • Išleidimo metai: 15-Mar-2019
  • Leidėjas: Wiley-Blackwell
  • ISBN-10: 1118966260
  • ISBN-13: 9781118966266
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 464 pages, aukštis x plotis x storis: 257x185x28 mm, weight: 1134 g
  • Išleidimo metai: 15-Mar-2019
  • Leidėjas: Wiley-Blackwell
  • ISBN-10: 1118966260
  • ISBN-13: 9781118966266
Kitos knygos pagal šią temą:

An authoritative overview of the ecological activities of microbes in the biosphere

Environmental Microbiology and Microbial Ecology presents a broad overview of microbial activity and microbes' interactions with their environments and communities. Adopting an integrative approach, this text covers both conventional ecological issues as well as cross-disciplinary investigations that combine facets of microbiology, ecology, environmental science and engineering, molecular biology, and biochemistry. Focusing primarily on single-cell forms of prokaryotes — and cellular forms of algae, fungi, and protozoans — this book enables readers to gain insight into the fundamental methodologies for the characterization of microorganisms in the biosphere.

The authors draw from decades of experience to examine the environmental processes mediated by microorganisms and explore the interactions between microorganisms and higher life forms. Highly relevant to modern readers, this book examines topics including the ecology of microorganisms in engineered environments, microbial phylogeny and interactions, microbial processes in relation to environmental pollution, and many more.

Now in its second edition, this book features updated references and major revisions to chapters on assessing microbial communities, community relationships, and their global impact. New content such as effective public communication of research findings and advice on scientific article review equips readers with practical real-world skills.

  • Explores the activities of microorganisms in specific environments with case studies and actual research data
  • Highlights how prominent microbial biologists address significant microbial ecology issues
  • Offers guidance on scientific communication, including scientific presentations and grant preparation
  • Includes plentiful illustrations and examples of microbial interactions, community structures, and human-bacterial connections
  • Provides chapter summaries, review questions, selected reading lists, a complete glossary, and critical thinking exercises

Environmental Microbiology and Microbial Ecology is an ideal textbook for graduate and advanced undergraduate courses in biology, microbiology, ecology, and environmental science, while also serving as a current and informative reference for microbiologists, cell and molecular biologists, ecologists, and environmental professionals.

Preface xv
1 Introduction to Microorganisms and Their Activities 1(32)
1.1 Central Themes of Environmental Microbiology and Microbial Ecology
1(1)
1.2 Are the Terms Prokaryotes or Eukaryotes Relevant?
1(3)
1.2.1 Intracellular Membranes in Prokaryotes
2(1)
1.2.2 Compartmentalized Heterotrophic Bacterial Cells
3(1)
1.2.3 The Universal Tree of Life: Rooted or Unrooted
4(1)
1.2.4 What About the Giant Viruses?
4(1)
1.3 Major Approach to Study Microorganisms
4(3)
1.3.1 Application of Genomics, Metagenomics, and Proteomics
6(1)
1.3.2 Biochemical and Physiological Analysis
7(1)
1.4 The Impact of Horizontal Gene Transfer Between Microorganisms
7(5)
1.4.1 Genetic Islands
9(1)
1.4.2 Risks from Genetically Modified Organisms
10(1)
1.4.3 Microbial Viruses and Gene Transfer Agents
10(2)
1.5 What Determines Which Microorganisms are Present?
12(7)
1.5.1 Metabolism as a Basis of Selection
13(1)
1.5.2 Is Persistence of Microorganisms Dependent Only on Spore Production?
14(5)
1.6 Is the Size and Shape of a Prokaryotic Cell Important?
19(4)
1.6.1 Nanobacteria
19(2)
1.6.2 Ultramicroscopic Bacteria
21(1)
1.6.3 Very Large Bacteria
21(1)
1.6.4 Influence of Diffusion on Bacterial Cell Form
22(1)
1.6.5 Features of a Specific Cell Form
22(1)
1.6.5.1 Coccus Form
22(1)
1.6.5.2 Rod Form
22(1)
1.6.5.3 Curved Rod or Spirochete Form
23(1)
1.6.5.4 Unusual Forms
23(1)
1.7 Microbial Predation
23(2)
1.7.1 Bacteria as Prey
23(1)
1.7.2 Bacteria as Trackers and Predators
24(1)
1.8 Summary
25(1)
Discussion Questions
25(1)
References
26(5)
Further Reading
31(2)
2 Microbes in the Biosphere: Examination, Cultivation, and Communities 33(44)
2.1 Overview and Focus
33(1)
2.2 Microscopy to Study Environmental Microbes
33(8)
2.2.1 Light Supported Microscopy
34(1)
2.2.2 Fluorescence Microscopy
35(2)
2.2.3 Scanning Confocal Laser Microscopy
37(1)
2.2.4 High Resolution by Electron Microscopy
37(4)
2.3 Internal Structures in Prokaryotes
41(3)
2.3.1 Gas Vacuoles
41(1)
2.3.2 Sulfur Globules
41(1)
2.3.3 Polymeric Carbon Reserves
42(1)
2.3.4 Polyphosphate Granules
43(1)
2.3.5 Metallic Nanoparticles
43(1)
2.4 Strategies for Culturing Microorganisms
44(5)
2.4.1 Overview
44(1)
2.4.2 Approaches for Isolation of Microorganisms
45(1)
2.4.3 Establishing Microbial Communities
45(1)
2.4.4 The iChip and Growing Uncultured Bacteria
46(3)
2.5 Molecular Detection
49(7)
2.5.1 Characterization of Microorganisms Using Genomics and Metagenomics
49(4)
2.5.2 Physiological Analysis Using Metatranscriptomics and Metaproteomics
53(1)
2.5.3 Lipid Biomarker Profiles
54(2)
2.6 Examining Bacteria that Do Not Grow as Pure Cultures in the Laboratory
56(3)
2.6.1 Host-dependent Microorganisms
56(2)
2.6.1.1 Bacteria as Obligate Pathogens
56(1)
2.6.1.2 Bacteria as Endosymbionts
57(1)
2.6.1.3 The Nanoarchaeum-Ignicoccus Relationship
58(1)
2.6.2 Molecular Analysis of Uncultivable Bacteria
58(1)
2.7 Microbial Community Structures
59(8)
2.7.1 Primary Production and Microbial Communities
59(3)
2.7.2 Biofilms
62(2)
2.7.3 Role of Quorum Sensing
64(3)
2.8 Summary
67(1)
Discussion Questions
68(1)
References
68(7)
Further Reading
75(2)
3 Terrestrial Systems: Soil and Subsurface Environments 77(40)
3.1 Overview and Focus
77(1)
3.2 Soil: An Environment for Microorganisms
77(3)
3.2.1 Soil Horizons
78(1)
3.2.2 Soil Organic Matter (SOM)
78(2)
3.3 Soil Microbiology
80(5)
3.3.1 Soil Prokaryotes
80(2)
3.3.2 Soil Fungi
82(1)
3.3.3 Soil Crusts
83(1)
3.3.4 Soil Invertebrates and Burrowing Animals
83(1)
3.3.5 The Rhizosphere and Associated Bacteria
83(2)
3.4 Understanding Soil Ecosystems
85(5)
3.4.1 The Carbon: Nitrogen Ratio
85(1)
3.4.2 The Fungi: Bacteria Ratio
85(1)
3.4.3 SOM and Soil Food Webs
86(3)
3.4.4 Influence of Agricultural Management on the Soil Microbe Community
89(1)
3.4.5 Impact of Viruses on the Soil Microbiota
90(1)
3.5 Subsurface Microbiology
90(5)
3.5.1 Groundwater
90(2)
3.5.2 Cave Water
92(1)
3.5.3 Deep Subsurface Aquifers
92(3)
3.5.3.1 Aquifer in a Coal-bearing Basin
92(1)
3.5.3.2 Deep Granitic Aquifer
93(1)
3.5.3.3 Anaerobic, Alkaline Aquifer
94(1)
3.5.3.4 Saline Hydrothermal Aquifer
94(1)
3.6 Deep Subsurface Microbiology
95(8)
3.6.1 Marine Sediment Microbiology
96(1)
3.6.2 Deep Mines and Boreholes
97(1)
3.6.3 Deep Subsea Floor
98(1)
3.6.4 Deep Subsurface Storage Sites
98(4)
3.6.4.1 Storage of Nuclear Fuel Waste
98(2)
3.6.4.2 Underground Storage for H2 and CH4
100(1)
3.6.4.3 Underground Storage for CO2
101(1)
3.6.4.4 Geothermal Energy Production
102(1)
3.6.5 Endolithic Microorganisms
102(1)
3.7 Life in Deep Subsurfaces
103(3)
3.7.1 Adjusting to a Subsurface Diet
103(1)
3.7.2 Energy Sources in the Deep Biosphere
103(2)
3.7.3 The Benefit of Living Together
105(1)
3.8 Geomicrobiology
106(4)
3.8.1 Rock and Mineral Weathering
106(1)
3.8.2 Mineral Transformations
107(2)
3.8.3 Microbial Metal Binding
109(1)
3.8.4 Microbiota of Subsurface Crystals
109(1)
3.9 Summary
110(1)
Discussion Questions
111(1)
References
111(5)
Further Reading
116(1)
4 Aquatic Surface Environments: Freshwater, Marine, and Wastewater 117(50)
4.1 Overview and Focus
117(1)
4.2 Water as Relevant to Microbial Growth
117(2)
4.2.1 Water Activity
118(1)
4.3 Marine Environments and Associated Microbiomes
119(12)
4.3.1 Marine Primary Productivity
120(2)
4.3.2 Marine Heterotrophs
122(1)
4.3.3 Bacterial Symbionts and Marine Hosts
123(2)
4.3.4 Microbial EPSs, Marine Snow, and Marine Gel Particles
125(2)
4.3.5 Brackish Water and Intertidal Zones
127(1)
4.3.6 Coral Reefs
128(3)
4.4 Freshwater Environments and Associated Microbiomes
131(13)
4.4.1 Lakes and Rivers
132(5)
4.4.2 Wetlands
137(2)
4.4.3 The Snow and Glacier Ice Ecosystems
139(1)
4.4.4 Microbiota of Cold and Hot Springs
140(2)
4.4.5 Microbial Mats
142(2)
4.5 Maintaining Populations in Low Nutrient Environments
144(4)
4.6 Aquaculture Wastewater
148(1)
4.7 Hormone Degradation in Fresh Water
149(1)
4.8 Human Activities and Influence on Microbial Ecology
150(1)
4.9 Drinking Water
151(1)
4.10 Municipal Water Treatment
151(1)
4.11 Wastewater Treatment Systems
152(2)
4.11.1 Septic Tanks
152(1)
4.11.2 Municipal Wastewater Treatment
152(21)
4.11.2.1 Primary Treatment
153(1)
4.11.2.2 Secondary Treatment
153(1)
4.12 Alternative Approaches for Wastewater Treatment
154(1)
4.13 Coliforms and Other Indicator Organisms
155(1)
4.14 Viruses in Aquatic Environments: Diversity and Activity
156(2)
4.15 Summary
158(1)
Discussion Questions
159(1)
References
159(7)
Further Reading
166(1)
5 Life in Extreme Environments 167(44)
5.1 Overview
167(1)
5.2 Sampling in Extreme Environments
168(5)
5.3 Extreme Temperature Environments
173(7)
5.3.1 Psychrophiles
174(2)
5.3.2 Thermophiles
176(19)
5.3.2.1 Alpine Environment - Yellowstone National Park
176(3)
5.3.2.2 Hydrothermal Vent Communities
179(1)
5.3.2.3 The Guaymas Basin
180(1)
5.4 Xerophiles
180(2)
5.5 Piezophiles
182(1)
5.6 Acidophiles
183(4)
5.7 Alkaliphiles
187(2)
5.8 Halophiles and Chaophiles
189(5)
5.9 Radioresistant Microorganisms
194(1)
5.10 Membrane Adaptations to Extreme Conditions
195(2)
5.10.1 Low Temperatures
195(1)
5.10.2 High Temperatures
196(1)
5.10.3 pH Extremes: Low and High
196(1)
5.11 Astrobiology
197(1)
5.12 Nutrient Limited 'Environments
198(2)
5.13 Volcanic Surfaces
200(2)
5.14 Summary
202(1)
Discussion Questions
202(1)
References
202(7)
Further Reading
209(2)
6 Mutualism: Microorganisms and Terrestrial Plants 211(38)
6.1 Overview and Focus
211(1)
6.2 Cyanobacteria and the Chloroplast Ancestor
211(6)
6.3 Lichens: Cyanobacteria/Algae-Fungi Mutualism
217(3)
6.3.1 Distribution and Organization
217(2)
6.3.2 Natural Products of Lichens
219(1)
6.4 Mutualisms with Cyanobacteria as Intracellular or Epiphytic Organisms
220(4)
6.4.1 Bryophytes
220(1)
6.4.2 Mosses
221(1)
6.4.3 Azolla
221(1)
6.4.4 Gunnera
222(1)
6.4.5 Cycads
222(1)
6.4.6 Geosiphon
222(2)
6.4.7 Diatoms
224(1)
6.5 Rhizobia-Legume Symbiosis
224(7)
6.5.1 Bacterial Species Involved
224(1)
6.5.2 Rhizospheric Rhizobia
225(1)
6.5.3 The Root Nodulation Process
226(4)
6.5.4 Nodules on Plant Stems
230(1)
6.6 Frankia and the Non-legume Nitrogen-fixing Nodule
231(2)
6.7 Mycorrhizae
233(4)
6.7.1 Arbuscular Mycorrhizae (AM)
235(1)
6.7.2 Ectomycorrhiza (EcM)
236(1)
6.8 Patterns of Regulation for Plant-Microbe Mutualism
237(1)
6.9 Bacterial-Fungal Interactions
238(2)
6.9.1 Direct Effects
238(1)
6.9.2 Plant Growth-promoting Bacteria
239(1)
6.9.3 Systemic Induction of Plant Immunity
239(1)
6.10 Endophytic Microorganisms
240(1)
6.11 Microbiology of the Phyllosphere
241(1)
6.12 Summary
242(1)
Discussion Questions
243(1)
References
243(4)
Further Reading
247(2)
7 Mutualism: Microorganisms and Animals 249(48)
7.1 Overview and Focus
249(1)
7.2 Building a Microbial Community - The Role of the Host
249(2)
7.2.1 Microbiology and Innate Immunity
249(1)
7.2.2 Microbiology and Adaptive Immunity
250(1)
7.3 Host Models to Study Parasite Relationships
251(1)
7.3.1 Germ-free Animals
251(1)
7.3.2 Caenorhabditis elegans
251(1)
7.3.3 Drosophila melanogaster
252(1)
7.3.4 Galleria mellonella
252(1)
7.4 Digestive Tract Environment
252(8)
7.4.1 Omnivores
253(1)
7.4.2 Carnivores
254(1)
7.4.3 Herbivores
255(5)
7.4.3.1 Bacteria and Archaea
257(1)
7.4.3.2 Anaerobic Protozoa
257(1)
7.4.3.3 Anaerobic Fungi
258(2)
7.4.3.4 Probiotics and Methane Mitigation Strategies
260(1)
7.5 The Human Microbiome
260(9)
7.5.1 Skin
260(1)
7.5.2 Oral Microorganisms
261(2)
7.5.3 Intestinal Microbiome
263(6)
7.5.3.1 Establishment of Intestinal Flora
263(1)
7.5.3.2 The Healthy Gut
264(1)
7.5.3.3 Influence of the Intestine on Human Health
265(1)
7.5.3.4 Obesity, Diabetes, and Health Issues
266(3)
7.5.3.5 Probiotics
269(1)
7.6 Gut Microbiota across the Animal World
269(10)
7.6.1 Systems of Maternal Transmission
270(1)
7.6.2 Microbiota of Ruminates and Hindgut Fermenters
270(5)
7.6.3 Gut Microbiota of Bears
275(1)
7.6.4 Microbiota of Birds
275(3)
7.6.5 Intestinal Bacteria of Fish
278(1)
7.7 Insect-Fungus Symbiosis
279(3)
7.7.1 Scale Insects and Septobasidium
279(1)
7.7.2 Attine Ant-Fungus Symbiosis
279(1)
7.7.3 Woodwasp-Fungus Symbiosis
280(1)
7.7.4 Ambrosia Beetles-Fungus
281(1)
7.7.5 Termite-Fungus
281(1)
7.8 Mutualisms Involving Insects and Bacteria
282(3)
7.8.1 Aphids-Buchnera and Endosymbionts
282(1)
7.8.2 Wolbachia-Insects
283(1)
7.8.3 Mealybug-Bacteria
283(1)
7.8.4 Termite Gut-Bacteria
284(1)
7.9 Mutualisms Involving Invertebrates
285(3)
7.9.1 Microbiome of Marine Worms
285(1)
7.9.2 Squid (Euprymna)-Vibrio fischeri Symbiosis
286(1)
7.9.3 Medicinal Leech-Aeromonas sp. and Rikenella-like Bacteria
287(1)
7.9.4 Nematode-Bacteria
288(1)
7.10 Summary
288(1)
Discussion Questions
289(1)
References
290(5)
Further Reading
295(2)
8 Microbes Driving the Nutrient Cycles 297(44)
8.1 Overview and Focus
297(1)
8.2 Nutrient Cycles and What Drives Them
297(2)
8.3 The Aerobic Environment
299(5)
8.3.1 The "Great Oxidation Event"
299(1)
8.3.2 Oxygen Cycle
300(3)
8.3.3 Hydrogen Peroxide and ROS
303(1)
8.4 Carbon - A Renewable Resource
304(8)
8.4.1 Carbon Dioxide Fixation and Carbonate Reduction
305(1)
8.4.2 Methanogenesis, Methanotrophy, and Methylotrophy
306(2)
8.4.3 Mineralization of Carbon Compounds
308(3)
8.4.4 Production and Utilization of CO
311(1)
8.4.5 Production and Utilization of Hydrogen Cyanide
312(1)
8.5 Nitrogen for Biosynthesis and Energy
312(7)
8.5.1 Nitrification
314(1)
8.5.2 Denitrification
314(1)
8.5.3 Nitrate Reduction
315(1)
8.5.4 Nitrite Reductase
316(1)
8.5.5 Metabolism of NO and N2O
316(1)
8.5.6 Production of NO by NOS
317(1)
8.5.7 Respiratory Ammonification
317(1)
8.5.8 Anammox Reaction
318(1)
8.5.9 Assimilation of Nitrogen
318(1)
8.5.10 Dinitrogen Fixation
318(1)
8.6 Sulfur Cycling
319(5)
8.6.1 Oxidation of Hydrogen Sulfide
320(1)
8.6.2 Oxidation of Elemental Sulfur
321(1)
8.6.3 Dissimilative S° Reduction
321(1)
8.6.4 Dissimilative Sulfate Reduction
322(1)
8.6.5 Assimilatory Sulfate Reduction
322(1)
8.6.6 Production of H2S and Dimethyl Sulfide
322(2)
8.6.6.1 Hydrogen Sulfide
322(1)
8.6.6.2 Dimethyl Sulfide
323(1)
8.7 Cycling of Trace Elements
324(4)
8.7.1 Iron
324(2)
8.7.2 Manganese
326(2)
8.8 Phosphorus Cycling
328(2)
8.9 Selenium Cycling
330(1)
8.10 Cycling Toxic Elements
331(4)
8.10.1 Mercury
331(1)
8.10.2 Arsenic
332(3)
8.11 Summary
335(1)
Discussion Questions
335(1)
References
336(4)
Further Reading
340(1)
9 Bioremediation Using Microorganisms 341(30)
9.1 Overview and Focus
341(1)
9.2 Microbial Bioremediation: Strategies and Applications
341(6)
9.2.1 Biostimulation
343(1)
9.2.2 Bioaugmentation
344(1)
9.2.2.1 Indigenous Bacteria
344(1)
9.2.2.2 Genetically Modified Organisms
344(1)
9.2.3 Intrinsic Bioremediation
345(1)
9.2.4 Microbial Consortium
345(1)
9.2.5 Co-metabolism
346(1)
9.3 Organic Compounds and Xenobiotics Degraded
347(15)
9.3.1 Pesticides
347(1)
9.3.2 Chlorinated Organic Compounds
348(4)
9.3.2.1 Chloroethylenes
349(1)
9.3.2.2 Chloromethanes
350(1)
9.3.2.3 Polychlorinated Biphenyl Compounds
351(1)
9.3.3 Population Dynamics in Degradation of Hydrocarbons
352(5)
9.3.3.1 Oil Spills
352(1)
9.3.3.2 Fuel Hydrocarbons
353(2)
9.3.3.3 Polyaromatic Hydrocarbons
355(2)
9.3.3.4 Azo Dyes
357(1)
9.3.4 Explosives
357(2)
9.3.4.1 Trinitrotoluene
357(2)
9.3.4.2 RDX and HMX
359(1)
9.3.4.3 Perchlorate
359(1)
9.3.5 Bioremediation and Detoxification of Metal(loid)s
359(3)
9.3.5.1 Dissimilatory Metal(loid) Reduction
360(1)
9.3.5.2 Methylation Reactions
361(1)
9.4 Design of Systems for Bioremediation
362(2)
9.4.1 In Situ vs Ex Situ
362(1)
9.4.2 Bioreactors
363(1)
9.4.3 Biofarming
363(1)
9.4.4 Permeable Reactive Barriers
363(1)
9.4.5 Groundwater and Lagoon Treatment
363(1)
9.4.6 Bioventing
364(1)
9.5 Summary
364(1)
Discussion Questions
364(1)
References
365(5)
Further Reading
370(1)
10 Biocorrosion and Geomicrobiology 371(28)
10.1 Overview and Focus
371(1)
10.2 Microbially Influenced Corrosion (MIC) of Ferrous Metals
371(5)
10.2.1 Current Theories of Biocorrosion
371(4)
10.2.1.1 EMIC
373(1)
10.2.1.2 CMIC
374(1)
10.2.1.3 Iron Sulfide Crusts
374(1)
10.2.1.4 Biofilms and Extracellular Matrix
374(1)
10.2.2 Biocorrosion of Nonferrous Materials
375(1)
10.2.3 Control of Biocorrosion
376(1)
10.3 Bioalteration of Rocks, Monuments, and Other Surfaces
376(4)
10.3.1 Biofilms on Rocks and Buildings
376(1)
10.3.2 Biodegradation of Art Objects
377(1)
10.3.2.1 Marble Statues in Italy
377(1)
10.3.2.2 Paintings in the Lascaux Cave in France
377(1)
10.3.2.3 Mogao Grottoes in China
378(1)
10.3.2.4 Damage to Frescoes
378(1)
10.3.3 Biotechnology for Restoration of Artworks and Historic Stones
378(2)
10.4 Biodeterioration of Concrete
380(2)
10.5 Mineral Interaction and Biomineralization
382(5)
10.5.1 Iron Hydroxides
382(1)
10.5.2 Magnetic Mineral Crystals
383(1)
10.5.3 Manganese Oxides
383(1)
10.5.4 Carbonates
384(1)
10.5.5 Phosphates
384(1)
10.5.6 Sulfates
385(1)
10.5.7 Sulfides
385(1)
10.5.8 Clays
385(1)
10.5.9 Uranium Precipitate and Crystals
386(1)
10.5.10 Gold Grains
386(1)
10.6 Interactions with Transition and Rare Earth Elements
387(2)
10.6.1 Transition Elements
387(1)
10.6.2 Rare Earth Elements
388(1)
10.7 Toxic Elements
389(2)
10.7.1 Mercury
389(1)
10.7.2 Chromium
389(1)
10.7.3 Arsenic
390(1)
10.7.4 Selenium
390(1)
10.8 Metallic and Metalloid Nanoparticles of Microbial Origin
391(2)
10.9 Summary
393(1)
Discussion Questions
393(1)
References
394(4)
Further Reading
398(1)
11 Microbial Communities and Metabolic Networks 399(36)
11.1 Overview and Focus
399(1)
11.2 Examples of Succession of Populations
399(4)
11.2.1 Development of Coral Black Band Disease
400(1)
11.2.2 Population Succession in Production of Dairy Products
400(1)
11.2.3 Population Dynamics in Fermentation of Non-dairy Foods
401(2)
11.2.3.1 Kimchi
401(1)
11.2.3.2 Coffee
401(1)
11.2.3.3 Cocoa
402(1)
11.2.3.4 Chinese Soy Sauce
402(1)
11.2.4 Composting Plant Material
403(1)
11.3 Impact of Climate Change on Microorganisms
403(3)
11.3.1 Marine Environment
403(1)
11.3.2 Soil Environment
404(2)
11.4 Syntrophy and Co-metabolism
406(2)
11.5 Ecosystem Created by Hydraulic Fracturing in Shale
408(1)
11.6 Extracellular Electron Transport
408(2)
11.6.1 Membrane-bound Proteins
409(1)
11.6.2 Electron Shuttling
409(1)
11.6.3 Nanowires
410(1)
11.6.4 Extracellular Electron Movement in Biofilms
410(1)
11.7 Cross-talk: Interkingdom Signaling
410(2)
11.7.1 Microbial Endocrinology
411(1)
11.7.2 Cross-signaling in Nonhuman Systems
412(1)
11.8 Evolving Systems of Interest
412(12)
11.8.1 Polyploidy in Bacteria
412(2)
11.8.2 Impact of Viruses and CRISPR-cas Systems
414(2)
11.8.3 Impact of Outer Membrane Vesicles
416(4)
11.8.4 Atmospheric Microbiology
420(3)
11.8.5 Long-distance Electron Transfer
423(1)
11.9 Summary
424(1)
Discussion Questions
425(1)
References
425(8)
Further Reading
433(2)
Index 435
Larry L. Barton is Professor Emeritus, Department of Biology, University of New Mexico. He is author or co-editor of eight books on microbiology and is founding editor of the journal Anaerobe. Dr. Barton studies the physiological activities of microorganisms, focusing on energetics of anaerobic bacteria and bacterial inorganic metabolism.

R.J.C. McLean is Regents Professor, Department of Biology, Texas State University. His research include biofilm growth and development as well as microbial mineral formation and nanobacteria.