1 Fundamental issues |
|
1 | (22) |
|
1.1 What is epidemiology? |
|
|
1 | (1) |
|
1.2 Case studies: the work of Doll and Hill |
|
|
2 | (4) |
|
1.3 Populations and samples |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (3) |
|
1.4.1 Incidence and prevalence |
|
|
9 | (1) |
|
1.5 Measuring the risk factor |
|
|
10 | (1) |
|
|
11 | (3) |
|
|
11 | (2) |
|
1.6.2 Problems with establishing causality |
|
|
13 | (1) |
|
1.6.3 Principles of causality |
|
|
14 | (1) |
|
1.7 Studies using routine data |
|
|
14 | (3) |
|
|
15 | (1) |
|
1.7.2 National sources of data on disease |
|
|
16 | (1) |
|
1.7.3 National sources of data on risk factors |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (3) |
|
1.8.1 Intervention studies |
|
|
18 | (1) |
|
1.8.2 Observational studies |
|
|
19 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
2 Basic analytical procedures |
|
23 | (66) |
|
|
23 | (1) |
|
2.1.1 Inferential procedures |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.2.1 The Scottish Heart Health Study |
|
|
24 | (1) |
|
|
25 | (2) |
|
2.3.1 Qualitative variables |
|
|
26 | (1) |
|
2.3.2 Quantitative variables |
|
|
26 | (1) |
|
2.3.3 The hierarchy of type |
|
|
26 | (1) |
|
|
27 | (6) |
|
|
29 | (4) |
|
2.4.2 Diagrams in reports |
|
|
33 | (1) |
|
2.5 Inferential techniques for categorical variables |
|
|
33 | (8) |
|
|
33 | (3) |
|
2.5.2 Binary variables: proportions and percentages |
|
|
36 | (4) |
|
2.5.3 Comparing two proportions or percentages |
|
|
40 | (1) |
|
2.6 Descriptive techniques for quantitative variables |
|
|
41 | (16) |
|
2.6.1 The five-number summary |
|
|
43 | (3) |
|
|
46 | (2) |
|
2.6.3 The two-number summary |
|
|
48 | (2) |
|
2.6.4 Other summary statistics of spread |
|
|
50 | (1) |
|
|
50 | (3) |
|
2.6.6 Investigating shape |
|
|
53 | (4) |
|
2.7 Inferences about means |
|
|
57 | (9) |
|
|
58 | (2) |
|
2.7.2 Inferences for a single mean |
|
|
60 | (1) |
|
2.7.3 Comparing two means |
|
|
61 | (3) |
|
|
64 | (2) |
|
2.8 Inferential techniques for non-normal data |
|
|
66 | (6) |
|
|
66 | (3) |
|
2.8.2 Nonparametric tests |
|
|
69 | (3) |
|
2.8.3 Confidence intervals for medians |
|
|
72 | (1) |
|
|
72 | (7) |
|
2.9.1 Quantitative variables |
|
|
72 | (2) |
|
2.9.2 Categorical variables |
|
|
74 | (3) |
|
2.9.3 Ordered categorical variables |
|
|
77 | (1) |
|
2.9.4 Internal consistency |
|
|
78 | (1) |
|
2.10 Assessing diagnostic tests |
|
|
79 | (6) |
|
2.10.1 Accounting for sensitivity and specificity |
|
|
81 | (4) |
|
|
85 | (4) |
3 Assessing risk factors |
|
89 | (36) |
|
3.1 Risk and relative risk |
|
|
89 | (3) |
|
|
92 | (2) |
|
3.3 Relative risk or odds ratio? |
|
|
94 | (3) |
|
|
97 | (1) |
|
|
98 | (7) |
|
|
99 | (1) |
|
|
100 | (1) |
|
3.5.3 Continuity corrections |
|
|
101 | (1) |
|
3.5.4 Fisher's exact test |
|
|
102 | (2) |
|
3.5.5 Limitations of tests |
|
|
104 | (1) |
|
3.6 Risk factors measured at several levels |
|
|
105 | (6) |
|
3.6.1 Continuous risk factors |
|
|
107 | (1) |
|
3.6.2 A test for linear trend |
|
|
108 | (3) |
|
3.6.3 A test for nonlinearity |
|
|
111 | (1) |
|
3.7 Attributable risk r s |
|
|
111 | (5) |
|
3.8 Rate and relative rate |
|
|
116 | (3) |
|
3.8.1 The general epidemiological rate |
|
|
119 | (1) |
|
3.9 Measures of difference |
|
|
119 | (1) |
|
3.10 EPITAB commands in Stata |
|
|
120 | (1) |
|
|
121 | (4) |
4 Confounding and interaction |
|
125 | (40) |
|
|
125 | (1) |
|
4.2 The concept of confounding |
|
|
126 | (3) |
|
4.3 Identification of confounders |
|
|
129 | (2) |
|
4.3.1 A strategy for selection |
|
|
130 | (1) |
|
4.4 Assessing confounding |
|
|
131 | (3) |
|
|
131 | (1) |
|
4.4.2 Using hypothesis tests |
|
|
132 | (1) |
|
4.4.3 Dealing with several confounding variables |
|
|
133 | (1) |
|
|
134 | (9) |
|
4.5.1 Direct standardisation of event rates |
|
|
135 | (3) |
|
4.5.2 Indirect standardisation of event rates |
|
|
138 | (3) |
|
4.5.3 Standardisation of risks |
|
|
141 | (2) |
|
4.6 Mantel-Haenszel methods |
|
|
143 | (6) |
|
4.6.1 The Mantel-Haenszel relative risk |
|
|
146 | (1) |
|
4.6.2 The Cochran-Mantel-Haenszel test |
|
|
147 | (1) |
|
|
148 | (1) |
|
4.7 The concept of interaction |
|
|
149 | (2) |
|
4.8 Testing for interaction |
|
|
151 | (9) |
|
4.8.1 Using the relative risk |
|
|
151 | (5) |
|
4.8.2 Using the odds ratio |
|
|
156 | (2) |
|
4.8.3 Using the risk difference |
|
|
158 | (1) |
|
4.8.4 Which type of interaction to use? |
|
|
159 | (1) |
|
4.8.5 Which interactions to test? |
|
|
159 | (1) |
|
4.9 Dealing with interaction |
|
|
160 | (1) |
|
4.10 EPITAB commands in Stata |
|
|
161 | (1) |
|
|
161 | (4) |
5 Cohort studies |
|
165 | (46) |
|
5.1 Design considerations |
|
|
165 | (4) |
|
|
165 | (1) |
|
|
165 | (2) |
|
5.1.3 Alternative designs with economic advantages |
|
|
167 | (1) |
|
5.1.4 Studies with a single baseline sample |
|
|
168 | (1) |
|
5.2 Analytical considerations |
|
|
169 | (4) |
|
5.2.1 Concurrent follow-up |
|
|
169 | (1) |
|
5.2.2 Moving baseline dates |
|
|
170 | (1) |
|
5.2.3 Varying follow-up durations |
|
|
170 | (2) |
|
|
172 | (1) |
|
|
173 | (8) |
|
5.3.1 Allowing for sampling variation |
|
|
175 | (1) |
|
5.3.2 Allowing for censoring |
|
|
176 | (1) |
|
5.3.3 Comparison of two life tables |
|
|
177 | (3) |
|
|
180 | (1) |
|
5.4 Kaplan-Meier estimation |
|
|
181 | (3) |
|
5.4.1 An empirical comparison |
|
|
182 | (2) |
|
5.5 Comparison of two sets of survival probabilities |
|
|
184 | (6) |
|
5.5.1 Mantel-Haenszel methods |
|
|
184 | (2) |
|
|
186 | (2) |
|
5.5.3 Weighted log-rank tests |
|
|
188 | (2) |
|
5.5.4 Allowing for confounding variables |
|
|
190 | (1) |
|
5.5.5 Comparing three or more groups |
|
|
190 | (1) |
|
|
190 | (3) |
|
5.7 The person-years method |
|
|
193 | (10) |
|
|
194 | (2) |
|
5.7.2 Summarisation of rates |
|
|
196 | (1) |
|
5.7.3 Comparison of two SERs |
|
|
197 | (2) |
|
5.7.4 Mantel-Haenszel methods |
|
|
199 | (3) |
|
|
202 | (1) |
|
5.8 Period-cohort analysis |
|
|
203 | (3) |
|
5.8.1 Period-specific rates |
|
|
204 | (2) |
|
|
206 | (5) |
6 Case-control studies |
|
211 | (46) |
|
6.1 Basic design concepts |
|
|
211 | (3) |
|
|
211 | (1) |
|
|
212 | (2) |
|
6.2 Basic methods of analysis |
|
|
214 | (6) |
|
6.2.1 Dichotomous exposure |
|
|
214 | (3) |
|
6.2.2 Polytomous exposure |
|
|
217 | (1) |
|
6.2.3 Confounding and interaction |
|
|
218 | (1) |
|
|
218 | (2) |
|
|
220 | (2) |
|
|
220 | (1) |
|
6.3.2 Inclusion and exclusion criteria |
|
|
220 | (1) |
|
6.3.3 Incident or prevalent? |
|
|
221 | (1) |
|
|
221 | (1) |
|
6.3.5 Consideration of bias |
|
|
221 | (1) |
|
6.4 Selection of controls |
|
|
222 | (7) |
|
|
222 | (2) |
|
|
224 | (2) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
|
229 | (2) |
|
|
229 | (1) |
|
|
230 | (1) |
|
6.5.3 One-to-many matching |
|
|
231 | (1) |
|
6.5.4 Matching in other study designs |
|
|
231 | (1) |
|
6.6 The analysis of matched studies |
|
|
231 | (14) |
|
|
232 | (2) |
|
|
234 | (6) |
|
6.6.3 1 : Variable matching |
|
|
240 | (2) |
|
6.6.4 Many: many matching |
|
|
242 | (3) |
|
6.6.5 A modelling approach |
|
|
245 | (1) |
|
6.7 Nested case-control studies |
|
|
245 | (3) |
|
|
247 | (1) |
|
6.7.2 Counter-matched studies |
|
|
248 | (1) |
|
|
248 | (2) |
|
6.9 Case-crossover studies |
|
|
250 | (1) |
|
|
251 | (6) |
7 Intervention studies |
|
257 | (38) |
|
|
257 | (2) |
|
|
259 | (1) |
|
|
259 | (1) |
|
7.2 Ethical considerations |
|
|
259 | (2) |
|
|
260 | (1) |
|
|
261 | (4) |
|
7.3.1 Use of a control group |
|
|
261 | (1) |
|
|
262 | (1) |
|
|
263 | (1) |
|
7.3.4 Consent before randomisation |
|
|
264 | (1) |
|
7.3.5 Analysis by intention-to-treat |
|
|
265 | (1) |
|
7.4 Parallel group studies |
|
|
265 | (8) |
|
7.4.1 Number needed to treat |
|
|
268 | (2) |
|
7.4.2 Cluster randomised trials |
|
|
270 | (1) |
|
7.4.3 Stepped wedge trials |
|
|
270 | (1) |
|
7.4.4 Non-inferiority trials |
|
|
271 | (2) |
|
|
273 | (11) |
|
|
275 | (2) |
|
|
277 | (5) |
|
7.5.3 Analysing preferences |
|
|
282 | (1) |
|
7.5.4 Analysing binary data |
|
|
283 | (1) |
|
|
284 | (2) |
|
7.6.1 The Haybittle-Peto stopping rule |
|
|
285 | (1) |
|
|
286 | (1) |
|
7.7 Allocation to treatment group |
|
|
286 | (5) |
|
7.7.1 Global randomisation |
|
|
286 | (2) |
|
7.7.2 Stratified randomization |
|
|
288 | (3) |
|
|
291 | (1) |
|
|
291 | (1) |
|
|
291 | (4) |
8 Sample size determination |
|
295 | (36) |
|
|
295 | (1) |
|
|
296 | (7) |
|
8.2.1 Choice of alternative hypothesis |
|
|
300 | (3) |
|
|
303 | (4) |
|
8.3.1 Common choices for power and significance level |
|
|
305 | (1) |
|
8.3.2 Using a table of sample sizes |
|
|
305 | (1) |
|
8.3.3 The minimum detectable difference |
|
|
306 | (1) |
|
8.3.4 The assumption of known standard deviation |
|
|
307 | (1) |
|
8.4 Testing a difference between means |
|
|
307 | (4) |
|
8.4.1 Using a table of sample sizes |
|
|
308 | (2) |
|
8.4.2 Power and minimum detectable difference |
|
|
310 | (1) |
|
8.4.3 Optimum distribution of the sample |
|
|
310 | (1) |
|
|
311 | (1) |
|
|
311 | (2) |
|
8.5.1 Using a table of sample sizes |
|
|
312 | (1) |
|
8.6 Testing a relative risk |
|
|
313 | (4) |
|
8.6.1 Using a table of sample sizes |
|
|
315 | (1) |
|
8.6.2 Power and minimum detectable relative risk |
|
|
316 | (1) |
|
|
317 | (7) |
|
8.7.1 Using a table of sample sizes |
|
|
319 | (1) |
|
8.7.2 Power and minimum detectable relative risk |
|
|
319 | (2) |
|
8.7.3 Comparison with cohort studies |
|
|
321 | (1) |
|
|
321 | (3) |
|
8.8 Complex sampling designs |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (5) |
9 Modelling quantitative outcome variables |
|
331 | (78) |
|
|
331 | (1) |
|
9.2 One categorical explanatory variable |
|
|
332 | (12) |
|
9.2.1 The hypotheses to be tested |
|
|
332 | (1) |
|
9.2.2 Construction of the ANOVA table |
|
|
333 | (3) |
|
9.2.3 How the ANOVA table is used |
|
|
336 | (1) |
|
9.2.4 Estimation of group means |
|
|
336 | (1) |
|
9.2.5 Comparison of group means |
|
|
337 | (1) |
|
|
338 | (3) |
|
9.2.7 Using computer packages |
|
|
341 | (3) |
|
9.3 One quantitative explanatory variable |
|
|
344 | (14) |
|
9.3.1 Simple linear regression |
|
|
344 | (8) |
|
|
352 | (3) |
|
9.3.3 Nonlinear regression |
|
|
355 | (3) |
|
9.4 Two categorical explanatory variables |
|
|
358 | (7) |
|
9.4.1 Model specification |
|
|
358 | (1) |
|
|
359 | (1) |
|
|
359 | (1) |
|
|
359 | (3) |
|
|
362 | (1) |
|
9.4.6 Least squares means |
|
|
363 | (1) |
|
|
364 | (1) |
|
|
365 | (6) |
|
9.6 General linear models |
|
|
371 | (6) |
|
9.7 Several explanatory variables |
|
|
377 | (6) |
|
9.7.1 Information criteria |
|
|
381 | (2) |
|
|
383 | (1) |
|
|
383 | (4) |
|
|
387 | (5) |
|
9.9.1 Adjustment using residuals |
|
|
391 | (1) |
|
|
392 | (6) |
|
|
395 | (1) |
|
9.10.2 Other types of splines |
|
|
396 | (2) |
|
|
398 | (4) |
|
9.12 Non-normal alternatives |
|
|
402 | (2) |
|
|
404 | (5) |
10 Modelling binary outcome data |
|
409 | (98) |
|
|
409 | (3) |
|
10.2 Problems with standard regression models |
|
|
412 | (1) |
|
10.2.1 The r-x relationship may well not be linear |
|
|
412 | (1) |
|
10.2.2 Predicted values of the risk may be outside the valid range |
|
|
412 | (1) |
|
10.2.3 The error distribution is not normal |
|
|
412 | (1) |
|
|
413 | (2) |
|
10.4 Interpretation of logistic regression coefficients |
|
|
415 | (12) |
|
10.4.1 Binary risk factors |
|
|
415 | (2) |
|
10.4.2 Quantitative risk factors |
|
|
417 | (2) |
|
10.4.3 Categorical risk factors |
|
|
419 | (5) |
|
10.4.4 Ordinal risk factors |
|
|
424 | (1) |
|
10.4.5 Floating absolute risks |
|
|
425 | (2) |
|
|
427 | (1) |
|
10.6 Multiple logistic regression models |
|
|
428 | (4) |
|
|
432 | (12) |
|
10.7.1 Goodness of fit for grouped data |
|
|
433 | (2) |
|
10.7.2 Goodness of fit for generic data |
|
|
435 | (1) |
|
10.7.3 Effect of a risk factor |
|
|
435 | (3) |
|
10.7.4 Information criteria |
|
|
438 | (2) |
|
10.7.5 Tests for linearity and nonlinearity |
|
|
440 | (3) |
|
10.7.6 Tests based upon estimates and their standard errors |
|
|
443 | (1) |
|
10.7.7 Problems with missing values |
|
|
444 | (1) |
|
|
444 | (1) |
|
|
445 | (7) |
|
10.9.1 Between two categorical variables |
|
|
445 | (4) |
|
10.9.2 Between a quantitative and a categorical variable |
|
|
449 | (3) |
|
10.9.3 Between two quantitative variables |
|
|
452 | (1) |
|
10.10 Dealing with a quantitative explanatory variable |
|
|
452 | (7) |
|
|
453 | (1) |
|
|
453 | (2) |
|
10.10.3 Linear spline form |
|
|
455 | (4) |
|
|
459 | (1) |
|
|
459 | (3) |
|
|
459 | (3) |
|
10.11.2 Influential observations |
|
|
462 | (1) |
|
|
462 | (5) |
|
10.12.1 Regression to the mean |
|
|
463 | (2) |
|
10.12.2 Correcting for regression dilution |
|
|
465 | (2) |
|
10.13 Case-control studies |
|
|
467 | (2) |
|
10.13.1 Unmatched studies |
|
|
467 | (1) |
|
|
468 | (1) |
|
10.14 Outcomes with several levels |
|
|
469 | (6) |
|
10.14.1 The proportional odds assumption |
|
|
471 | (2) |
|
10.14.2 The proportional odds model |
|
|
473 | (2) |
|
10.14.3 Multinomial regression |
|
|
475 | (1) |
|
|
475 | (1) |
|
10.16 Binomial regression |
|
|
476 | (12) |
|
|
479 | (4) |
|
|
483 | (1) |
|
10.16.3 Problems with binomial models |
|
|
484 | (4) |
|
|
488 | (13) |
|
10.17.1 Pair-matched propensity scores |
|
|
488 | (1) |
|
10.17.2 Stratified propensity scores |
|
|
489 | (1) |
|
10.17.3 Weighting by the inverse propensity score |
|
|
490 | (1) |
|
10.17.4 Adjusting for the propensity score |
|
|
491 | (1) |
|
10.17.5 Deriving the propensity score |
|
|
492 | (1) |
|
10.17.6 Propensity score outliers |
|
|
493 | (1) |
|
10.17.7 Conduct of the matched design |
|
|
493 | (1) |
|
10.17.8 Analysis of the matched design |
|
|
494 | (1) |
|
|
495 | (3) |
|
10.17.10 Interpretation of effects |
|
|
498 | (1) |
|
10.17.11 Problems with estimating uncertainty |
|
|
499 | (1) |
|
10.17.12 Propensity scores in practice |
|
|
499 | (2) |
|
|
501 | (6) |
11 Modelling follow-up data |
|
507 | (58) |
|
|
507 | (1) |
|
11.1.1 Models for survival data |
|
|
507 | (1) |
|
11.2 Basic functions of survival time |
|
|
507 | (1) |
|
11.2.1 The survival function |
|
|
507 | (1) |
|
11.2.2 The hazard function |
|
|
507 | (1) |
|
11.3 Estimating the hazard function |
|
|
508 | (4) |
|
11.3.1 Kaplan-Meier estimation |
|
|
508 | (2) |
|
11.3.2 Person-time estimation |
|
|
510 | (1) |
|
11.3.3 Actuarial estimation |
|
|
511 | (1) |
|
11.3.4 The cumulative hazard |
|
|
512 | (1) |
|
|
512 | (9) |
|
11.4.1 The probability density and cumulative distribution functions |
|
|
512 | (2) |
|
|
514 | (1) |
|
11.4.3 The exponential distribution |
|
|
514 | (3) |
|
11.4.4 The Weibull distribution |
|
|
517 | (3) |
|
11.4.5 Other probability models |
|
|
520 | (1) |
|
11.5 Proportional hazards regression models |
|
|
521 | (5) |
|
11.5.1 Comparing two groups |
|
|
521 | (1) |
|
11.5.2 Comparing several groups |
|
|
521 | (2) |
|
11.5.3 Modelling with a quantitative variable |
|
|
523 | (1) |
|
11.5.4 Modelling with several variables |
|
|
524 | (1) |
|
|
525 | (1) |
|
11.6 The Cox proportional hazards model |
|
|
526 | (10) |
|
11.6.1 Time-dependent covariates |
|
|
535 | (1) |
|
|
536 | (1) |
|
11.7 The Weibull proportional hazards model |
|
|
536 | (5) |
|
|
541 | (5) |
|
11.8.1 Log cumulative hazard plots |
|
|
541 | (4) |
|
11.8.2 An objective test of proportional hazards for the Cox model |
|
|
545 | (1) |
|
11.8.3 An objective test of proportional hazards for the Weibull model |
|
|
545 | (1) |
|
11.8.4 Residuals and influence |
|
|
546 | (1) |
|
11.8.5 Nonproportional hazards |
|
|
546 | (1) |
|
|
546 | (3) |
|
11.9.1 Joint modeling of longitudinal and survival data |
|
|
548 | (1) |
|
|
549 | (10) |
|
11.10.1 Simple regression |
|
|
550 | (3) |
|
11.10.2 Multiple regression |
|
|
553 | (2) |
|
11.10.3 Comparison of standardised event ratios |
|
|
555 | (1) |
|
11.10.4 Routine or registration data |
|
|
556 | (2) |
|
|
558 | (1) |
|
|
559 | (1) |
|
11.11 Pooled logistic regression |
|
|
559 | (2) |
|
|
561 | (4) |
12 Meta-analysis |
|
565 | (40) |
|
|
565 | (2) |
|
12.1.1 The Cochrane Collaboration |
|
|
567 | (1) |
|
|
567 | (5) |
|
12.2.1 Designing a systematic review |
|
|
567 | (4) |
|
|
571 | (1) |
|
12.3 A general approach to pooling |
|
|
572 | (12) |
|
12.3.1 Inverse variance weighting |
|
|
573 | (1) |
|
12.3.2 Fixed effect and random effects |
|
|
573 | (1) |
|
12.3.3 Quantifying heterogeneity |
|
|
574 | (2) |
|
12.3.4 Estimating the between-study variance |
|
|
576 | (1) |
|
12.3.5 Calculating inverse variance weights |
|
|
577 | (1) |
|
12.3.6 Calculating standard errors from confidence intervals |
|
|
577 | (1) |
|
|
578 | (4) |
|
12.3.8 Pooling risk differences |
|
|
582 | (1) |
|
12.3.9 Pooling differences in mean values |
|
|
583 | (1) |
|
|
583 | (1) |
|
12.3.11 Pooling mixed quantities |
|
|
583 | (1) |
|
12.3.12 Dose-response meta-analysis |
|
|
584 | (1) |
|
12.4 Investigating heterogeneity |
|
|
584 | (7) |
|
|
585 | (1) |
|
|
586 | (2) |
|
12.4.3 Sensitivity analyses |
|
|
588 | (1) |
|
|
588 | (3) |
|
12.5 Pooling tabular data |
|
|
591 | (2) |
|
12.5.1 Inverse variance weighting |
|
|
591 | (1) |
|
12.5.2 Mantel-Haenszel methods |
|
|
591 | (1) |
|
|
592 | (1) |
|
12.5.4 Dealing with zeros |
|
|
592 | (1) |
|
12.5.5 Advantages and disadvantages of using tabular data |
|
|
593 | (1) |
|
12.6 Individual participant data |
|
|
593 | (1) |
|
12.7 Dealing with aspects of study quality |
|
|
594 | (1) |
|
|
595 | (5) |
|
|
596 | (1) |
|
12.8.2 Consequences of publication bias |
|
|
597 | (1) |
|
12.8.3 Correcting for publication bias |
|
|
597 | (2) |
|
12.8.4 Other causes of asymmetry in funnel plots |
|
|
599 | (1) |
|
12.9 Advantages and limitations of meta-analysis |
|
|
600 | (1) |
|
|
600 | (5) |
13 Risk scores and clinical decision rules |
|
605 | (74) |
|
|
605 | (3) |
|
13.1.1 Individual and population level interventions |
|
|
605 | (2) |
|
13.1.2 Scope of this chapter |
|
|
607 | (1) |
|
13.2 Association and prognosis |
|
|
608 | (10) |
|
13.2.1 The concept of discrimination |
|
|
610 | (1) |
|
13.2.2 Risk factor thresholds |
|
|
611 | (4) |
|
|
615 | (1) |
|
13.2.4 Odds ratios and discrimination |
|
|
616 | (2) |
|
13.3 Risk scores from statistical models |
|
|
618 | (7) |
|
13.3.1 Logistic regression |
|
|
618 | (2) |
|
13.3.2 Multiple variable risk scores |
|
|
620 | (1) |
|
|
621 | (2) |
|
|
623 | (1) |
|
13.3.5 Multiple thresholds |
|
|
624 | (1) |
|
13.4 Quantifying discrimination |
|
|
625 | (12) |
|
13.4.1 The area under the curve |
|
|
626 | (3) |
|
|
629 | (2) |
|
|
631 | (1) |
|
13.4.4 The standardised mean effect size |
|
|
632 | (5) |
|
13.4.5 Other measures of discrimination |
|
|
637 | (1) |
|
|
637 | (6) |
|
13.5.1 Overall calibration |
|
|
638 | (1) |
|
|
638 | (1) |
|
13.5.3 Grouped calibration |
|
|
639 | (2) |
|
|
641 | (2) |
|
|
643 | (5) |
|
13.6.1 Recalibration of the mean |
|
|
643 | (1) |
|
13.6.2 Recalibration of scores in a fixed cohort |
|
|
643 | (3) |
|
13.6.3 Recalibration of parameters from a Cox model |
|
|
646 | (1) |
|
13.6.4 Recalibration and discrimination |
|
|
647 | (1) |
|
13.7 The accuracy of predictions |
|
|
648 | (3) |
|
|
648 | (2) |
|
13.7.2 Comparison of Brier scores |
|
|
650 | (1) |
|
13.8 Assessing an extraneous prognostic variable |
|
|
651 | (1) |
|
|
652 | (10) |
|
13.9.1 The integrated discrimination improvement from a fixed cohort |
|
|
653 | (3) |
|
13.9.2 The net reclassification improvement from a fixed cohort |
|
|
656 | (3) |
|
13.9.3 The integrated discrimination improvement from a variable cohort |
|
|
659 | (1) |
|
13.9.4 The net reclassification improvement from a variable cohort |
|
|
660 | (2) |
|
|
662 | (1) |
|
|
662 | (1) |
|
13.11 Presentation of risk scores |
|
|
663 | (11) |
|
|
664 | (10) |
|
|
674 | (1) |
|
|
675 | (4) |
14 Computer-intensive methods |
|
679 | (76) |
|
|
679 | (1) |
|
|
679 | (5) |
|
14.2.1 Bootstrap distributions |
|
|
681 | (3) |
|
14.3 Bootstrap confidence intervals |
|
|
684 | (8) |
|
14.3.1 Bootstrap normal intervals |
|
|
685 | (1) |
|
14.3.2 Bootstrap percentile intervals |
|
|
686 | (2) |
|
14.3.3 Bootstrap bias-corrected intervals |
|
|
688 | (2) |
|
14.3.4 Bootstrap bias-corrected and accelerated intervals |
|
|
690 | (1) |
|
14.3.5 Overview of the worked example |
|
|
691 | (1) |
|
14.3.6 Choice of bootstrap interval |
|
|
692 | (1) |
|
14.4 Practical issues when bootstrapping |
|
|
692 | (4) |
|
|
692 | (1) |
|
14.4.2 How many replications should be used? |
|
|
693 | (3) |
|
14.4.3 Sensible strategies |
|
|
696 | (1) |
|
14.5 Further examples of bootstrapping |
|
|
696 | (7) |
|
14.5.1 Complex bootstrap samples |
|
|
701 | (2) |
|
14.6 Bootstrap hypothesis testing |
|
|
703 | (2) |
|
14.7 Limitations of bootstrapping |
|
|
705 | (1) |
|
|
706 | (3) |
|
14.8.1 Monte Carlo permutation tests |
|
|
707 | (2) |
|
|
709 | (1) |
|
|
709 | (7) |
|
14.9.1 Dealing with missing values |
|
|
711 | (2) |
|
14.9.2 Types of missingness |
|
|
713 | (1) |
|
14.9.3 Complete case analyses |
|
|
714 | (2) |
|
14.10 Naive imputation methods |
|
|
716 | (4) |
|
|
716 | (1) |
|
14.10.2 Conditional mean and regression imputation |
|
|
716 | (2) |
|
14.10.3 Hot deck imputation and predictive mean matching |
|
|
718 | (1) |
|
14.10.4 Longitudinal data |
|
|
719 | (1) |
|
14.11 Univariate multiple imputation |
|
|
720 | (13) |
|
14.11.1 Multiple imputation by regression |
|
|
720 | (1) |
|
14.11.2 The three-step process in MI \ |
|
|
721 | (1) |
|
14.11.3 Imputer's and analyst's models |
|
|
722 | (1) |
|
14.11.4 Rubin's equations |
|
|
723 | (5) |
|
14.11.5 Imputation diagnostics |
|
|
728 | (1) |
|
14.11.6 Skewed continuous data |
|
|
729 | (2) |
|
14.11.7 Other types of variables |
|
|
731 | (1) |
|
14.11.8 How many imputations? |
|
|
731 | (2) |
|
14.12 Multivariate multiple imputation |
|
|
733 | (14) |
|
14.12.1 Monotone imputation |
|
|
733 | (1) |
|
14.12.2 Data augmentation |
|
|
734 | (8) |
|
14.12.3 Categorical variables |
|
|
742 | (1) |
|
14.12.4 What to do when DA fails |
|
|
742 | (1) |
|
14.12.5 Chained equations |
|
|
743 | (4) |
|
14.12.6 Longitudinal data |
|
|
747 | (1) |
|
14.13 When is it worth imputing? |
|
|
747 | (1) |
|
|
748 | (7) |
Appendix A Materials available on the website for this book |
|
755 | (4) |
Appendix B Statistical tables |
|
759 | (26) |
Appendix C Additional datasets for exercises |
|
785 | (14) |
References |
|
799 | (22) |
Index |
|
821 | |