Atnaujinkite slapukų nuostatas

El. knyga: Epitaxy of Nanostructures

  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 09-Mar-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662070666
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Serija: NanoScience and Technology
  • Išleidimo metai: 09-Mar-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Kalba: eng
  • ISBN-13: 9783662070666
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The general trend in modern solid state physics and technology is to make things smaller. The size of key elements in modern devices approaches the nanometer scale, for both vertical and lateral dimensions. Ultrathin layers, or quantum wells, had already gained broad acceptance for applications in micro- and optoelectronics by the 1980s. However, the development of het­ erostructures with lower dimensionality (quantum wires, where carriers are confined in two directions and move freely in one, and quantum dots, where carriers are confined in all three directions) took longer. It became clear that quantum wire and dot structures constitute the utmost technological chal­ lenge, whilst providing enormous advantages. At the beginning of the 1990s, a few outstanding discoveries concern­ ing self-organization phenomena at crystal surfaces for direct fabrication of nanostructures led to a change in the major paradigms of semiconductor physics and technology. This new approach in epitaxy enables fast parallel fabrication of large densities of quantum dots or wires for almost unlimited material combinations and has become the basis for a powerful new branch of nanotechnology. Quantum dots, coherent inclusions in a semiconductor ma­ trix with zero-dimensional electronic properties persistent up to room tem­ perature, have demonstrated fascinating physical properties and given birth to a novel generation of optoelectronic devices and systems.

Recenzijos

From the reviews:









"The book focuses on the physical mechanisms behind the spontaneous formation of ordered nanostructures . The list of chapters give a good indication on the points of view of the authors. Most books on nanophysics deal with isolated nanosystems, or nanosystems in solutions. This one gives a good overview of deposited nanostructures. It will then be helpful to researchers working or entering the specific field of research, but also to people coming from the thin films or interface fields." (Michel Wautelet, Physicalia, Vol. 57 (3), 2005)



"This monograph is a detailed account of the theory and practice of growth, characterization and applications of quantum-dot nanostructures (of mainly compound semiconductors) in real devices, written by a group of leading experts in the field which makes it an invaluable asset in any nanostructuregrowth laboratory. this monograph, aimed at the postgraduate and specialist level, is excellent on so many levels that I strongly recommend it to scientists engaged in nanostructure research and to those who consider entering this fascinating field." (Dr I. O. Goldfarb, Contemporary Physics, Vol. 46 (3), 2005)



"This book is intended to explain to at least a postgraduate and above, the mechanisms, growth processes, analytical characterisation techniques and, ultimately, the potential areas of application of epitaxial nanostructures . this book makes a very informative introduction and guide to the complex world of epitaxial nanostructures and is well worth the asking price." (Paul Cannard, Materials World, Vol. 13 (2), February, 2005)

Introduction
1(15)
Approaching the End of Moore's Law: What Next?
1(3)
Paradigm Changes in Semiconductor Physics and Technology
4(7)
Surfing Through Books and Reviews
11(4)
Growth and Characterization Techniques
15(42)
Basics of Molecular Beam Epitaxy
17(16)
MBE Apparatus
17(2)
Understanding MBE Growth Processes
19(3)
Phase Diagrams
22(4)
Solid-Liquid-Vapor Equilibrium for Binary Compounds
26(2)
Solid-Vapor Equilibrium for Ternary Alloys
28(2)
Segregation Effects
30(3)
Basics of Metalorganic Chemical Vapor Deposition
33(2)
Main Characterization Techniques
35(22)
Direct Imaging Methods
36(4)
Transmission Electron Microscopy
40(8)
Diffraction Methods
48(6)
Optical Methods
54(3)
Self-Organization Phenomena at Crystal Surfaces
57(178)
Periodically Faceted Surfaces
61(43)
Equilibrium Crystal Shape: Two Distinct Formulations of the Problem
61(2)
Faceting: Analogy with Phase Separation
63(2)
Intrinsic Surface Stress of a Solid
65(2)
Thin Strained Epitaxial Film as a Model of a Surface
67(1)
Simple Lattice Model for Intrinsic Surface Stress
68(3)
Capillarity Phenomena at Solid Surfaces
71(2)
Periodically Faceted Surfaces
73(3)
Faceting Phenomena on (311) Surfaces of GaAs and AlAs
76(20)
Macroscopic Step Bunching and Faceting of Vicinal Surfaces
96(5)
Variety of Periodically Faceted Surfaces
101(2)
Faceted Surfaces: Understanding and Prospects
103(1)
Surface Arrays of Two-Dimensional Islands
104(52)
Homoepitaxial Systems at Submonolayer Coverage
108(2)
Energetics of a Heteroepitaxial System at Submonolayer Coverage
110(13)
Arrays of 2D Strained Islands at Low Temperatures
123(12)
Arrays of 2D Strained Islands at Low Coverage
135(1)
Equilibrium Distribution of Island Sizes
136(4)
Crossover from Kinetically Controlled to Thermodynamically Limited Growth of 2D Strained Islands
140(2)
Submonolayer Arrays of In As/GaAs Islands
142(3)
Submonolayer Islands at Work
145(11)
Arrays of Three-Dimensional Coherently Strained Islands
156(79)
The In(Ga)As/GaAs System: From Three-Dimensional Islands to Quantum Dots
156(9)
Coherent vs. Dislocated Islands in Lattice-Mismatched Systems
165(3)
Size-Limited Island Growth: Are Islands Stable Against Ripening?
168(5)
Energetics of a Lattice-Mismatched Heteroepitaxial System
173(2)
Dilute Array of 3D Strained Islands
175(3)
Ordering of Islands in Terms of Shape
178(2)
Size Ordering of Islands vs. Ostwald Ripening
180(3)
Lateral Arrangement of Islands
183(5)
Phase Diagram of Arrays of Interacting Strained Islands
188(2)
Equilibrium Thickness of the Wetting Layer
190(4)
Two Exact Theorems on the Shape vs. Volume Dependence of 3D Islands
194(5)
Kinetic Theories of Size-Limited Island Growth
199(7)
Experimental Studies of 3D Island Formation in the In(Ga)As/GaAs System
206(8)
Temperature Ramping and Cooling in InAs/GaAs Systems: Evidence of Close-to-Equilibrium Behavior
214(10)
Formation of InAs/GaAs Islands at Ultra-Low Temperatures
224(2)
3D Islands in Other Material Systems
226(5)
What Have we Learned about 3D Coherently Strained Islands?
231(4)
Engineering of Complex Nanostructures: Working Together with Nature
235(80)
Multisheet Arrays of Strained Islands
237(26)
Vertical Correlation of Strained Islands
238(1)
Order Enhancement in Multisheet Arrays
239(4)
Electronically Coupled Multisheet Quantum Dots
243(3)
Seeding of Quantum Dots
246(3)
Engineering the Exciton Wave Function by Stacking Quantum Dots
249(2)
Surface Evolution During Overgrowth of Strained Islands
251(2)
Defect-Reduction Techniques
253(10)
Anticorrelation in Multisheet Arrays of Strained Islands
263(19)
Generalized Rayleigh Waves in Elastically Anisotropic Crystals
264(1)
Formation of Multisheet Arrays in Elastically Anisotropic Crystals
265(4)
Multisheet Arrays of CdSe/ZnSe Submonolayer Islands
269(7)
Highly-Ordered Quantum Dot Superlattices
276(4)
Anticorrelated Multisheet Nanostructures in III-V Semiconductors
280(2)
Activated Alloy Phase Separation During Overgrowth of Quantum Dots
282(33)
Basic Physics of Phase Separation in Alloys
282(20)
Steady-State Composition-Modulated Structures in Growing Alloy Films
302(6)
Alloy Growth on Stressors: Activated Phase Separation
308(7)
Devices Based on Epitaxial Nanostructures
315(20)
Quantum Dot Heterostructure Lasers
316(17)
Basic Advantages of Heterostructure Lasers
317(1)
Development of Heterostructure Lasers
318(3)
The Key Breakthrough: Self-Organized Growth
321(2)
State of the Art in Quantum Dot Lasers: Taking an Upper Hand
323(10)
Quantum Dot Nanostructures for Single-Electron Devices
333(2)
Conclusion
335(2)
A. Energy of a Strained Disk with Perturbed Shape
337(12)
A.1 Energy of the Disk Boundary
338(1)
A.2 Elastic Relaxation Energy of the Disk
339(2)
A.3 Evaluation of Integrals
341(5)
A.4 Stiffiness of the Disk against Shape Perturbations
346(3)
B. Elastic Interaction of Two Strained Disks
349(6)
C. Stiffness of a Hexagonal Array of Interacting Strained Disks
355(4)
References 359(26)
Index 385