Equivalents of the Riemann Hypothesis-Volume One |
|
|
|
x | |
|
|
xiv | |
|
|
xvi | |
|
|
xvii | |
|
|
xxi | |
|
|
1 | (14) |
|
|
1 | (1) |
|
|
1 | (7) |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
2 The Riemann Zeta Function |
|
|
15 | (25) |
|
|
15 | (1) |
|
|
16 | (5) |
|
|
21 | (4) |
|
2.4 Landau's Zero-Free Region |
|
|
25 | (4) |
|
2.5 Zero-Free Regions Summary |
|
|
29 | (1) |
|
2.6 The Product Over Zeta Zeros |
|
|
30 | (9) |
|
|
39 | (1) |
|
|
40 | (28) |
|
|
40 | (1) |
|
3.2 Constructing Tables of Bounds for psi(x) |
|
|
41 | (10) |
|
3.3 Exact Verification Using Computation |
|
|
51 | (3) |
|
3.4 Estimates for theta(x) |
|
|
54 | (11) |
|
|
65 | (2) |
|
|
67 | (1) |
|
|
68 | (26) |
|
|
68 | (1) |
|
4.2 The Prime Number Theorem and Its RH Equivalences |
|
|
69 | (12) |
|
|
81 | (7) |
|
4.4 Errors in Arithmetic Sums |
|
|
88 | (5) |
|
|
93 | (1) |
|
5 Euler's Totient Function |
|
|
94 | (50) |
|
|
94 | (4) |
|
5.2 Estimates for Euler's Function phi(n) |
|
|
98 | (12) |
|
5.3 Preliminary Results With RH True |
|
|
110 | (13) |
|
5.4 Further Results With RH True |
|
|
123 | (7) |
|
5.5 Preliminary Results With RH False |
|
|
130 | (5) |
|
5.6 Nicolas' First Theorem |
|
|
135 | (2) |
|
5.7 Nicolas' Second Theorem |
|
|
137 | (5) |
|
|
142 | (2) |
|
6 A Variety of Abundant Numbers |
|
|
144 | (21) |
|
|
144 | (3) |
|
6.2 Superabundant Numbers |
|
|
147 | (6) |
|
6.3 Colossally Abundant Numbers |
|
|
153 | (8) |
|
6.4 Estimates for x2(epsilon) |
|
|
161 | (2) |
|
|
163 | (2) |
|
|
165 | (35) |
|
|
165 | (4) |
|
7.2 Ramanujan's Theorem Assuming RH |
|
|
169 | (5) |
|
7.3 Preliminary Lemmas With RH True |
|
|
174 | (6) |
|
7.4 Bounding Phipless than or equal to x(1-p-2) From Above With RH True |
|
|
180 | (4) |
|
7.5 Bounding loglogN From Below With RH True |
|
|
184 | (2) |
|
7.6 Proof of Robin's Theorem With RH True |
|
|
186 | (2) |
|
7.7 An Unconditional Bound for sigma(n)/n |
|
|
188 | (2) |
|
7.8 Bounding loglogN From Above Without RH |
|
|
190 | (1) |
|
7.9 A Lower Bound for sigma(n)/n With RH False |
|
|
191 | (2) |
|
7.10 Lagarias' Formulation of Robin's Criterion |
|
|
193 | (3) |
|
7.11 Unconditional Results for Lagarias' Formulation |
|
|
196 | (1) |
|
7.12 Unitary Divisor Sums |
|
|
197 | (1) |
|
|
198 | (2) |
|
8 Numbers That Do Not Satisfy Robin's Inequality |
|
|
200 | (18) |
|
|
200 | (2) |
|
8.2 Hardy-Ramanujan Numbers |
|
|
202 | (6) |
|
8.3 Integers Not Divisible by the Fifth Power of Any Prime |
|
|
208 | (3) |
|
8.4 Integers Not Divisible by the Seventh Power of Any Prime |
|
|
211 | (3) |
|
8.5 Integers Not Divisible by the 11th Power of Any Prime |
|
|
214 | (3) |
|
|
217 | (1) |
|
9 Left, Right and Extremely Abundant Numbers |
|
|
218 | (18) |
|
|
218 | (2) |
|
|
220 | (3) |
|
9.3 Further Preliminary Results |
|
|
223 | (2) |
|
9.4 Riemann Hypothesis Equivalences |
|
|
225 | (7) |
|
9.5 Comparing Colossally and Left Abundant Numbers |
|
|
232 | (3) |
|
9.6 Extremely Abundant Numbers |
|
|
235 | (1) |
|
|
235 | (1) |
|
10 Other Equivalents to the Riemann Hypothesis |
|
|
236 | (51) |
|
|
236 | (3) |
|
|
239 | (2) |
|
|
241 | (6) |
|
|
247 | (3) |
|
|
250 | (2) |
|
10.6 Dirichlet Eta Function |
|
|
252 | (1) |
|
10.7 The Derivative of zeta(s) |
|
|
253 | (3) |
|
10.8 A Zeta-Related Inequality |
|
|
256 | (3) |
|
10.9 The Real Part of the Logarithmic Derivative of xi(s) |
|
|
259 | (12) |
|
10.10 The Order of Elements of the Symmetric Group |
|
|
271 | (11) |
|
10.11 Hilbert-Polya Conjecture |
|
|
282 | (3) |
|
|
285 | (1) |
|
|
286 | (1) |
|
|
287 | (7) |
|
A.1 Extremely Abundant Numbers |
|
|
287 | (1) |
|
A.2 Small Numbers Not Satisfying Robin's Inequality |
|
|
288 | (1) |
|
A.3 Superabundant Numbers |
|
|
289 | (1) |
|
A.4 Colossally Abundant Numbers |
|
|
290 | (1) |
|
A.5 Primes to Make Colossally Abundant Numbers |
|
|
291 | (1) |
|
A.6 Small Numbers Satisfying Nicolas' Reversed Inequality |
|
|
292 | (1) |
|
|
293 | (1) |
|
A.8 Maximum Order of an Element of the Symmetric Group |
|
|
293 | (1) |
|
Appendix B: RHpack Mini-Manual |
|
|
294 | (19) |
|
|
294 | (2) |
|
|
296 | (17) |
|
|
313 | (8) |
|
|
321 | |
Equivalents of the Riemann Hypothesis-Volume Two |
|
|
|
xi | |
|
|
xiv | |
|
|
xvi | |
|
|
xvii | |
|
|
xxi | |
|
|
1 | (7) |
|
|
1 | (1) |
|
1.2 Summary of Volume Two |
|
|
2 | (5) |
|
1.3 How to Read This Book |
|
|
7 | (1) |
|
|
8 | (15) |
|
|
8 | (2) |
|
|
10 | (4) |
|
2.3 Additional Properties of the Riesz Function |
|
|
14 | (1) |
|
2.4 The Series of Hardy and Littlewood |
|
|
15 | (1) |
|
2.5 A General Theorem for a Class of Entire Functions |
|
|
16 | (6) |
|
|
22 | (1) |
|
3 Banach and Hilbert Space Methods |
|
|
23 | (14) |
|
|
23 | (2) |
|
3.2 Preliminary Definitions and Results |
|
|
25 | (4) |
|
|
29 | (6) |
|
|
35 | (2) |
|
4 The Riemann Xi Function |
|
|
37 | (25) |
|
|
37 | (3) |
|
|
40 | (9) |
|
4.3 Monotonicity of |xi(s)| |
|
|
49 | (2) |
|
4.4 Positive Even Derivatives |
|
|
51 | (3) |
|
|
54 | (5) |
|
|
59 | (3) |
|
5 The De Bruijn-Newman Constant |
|
|
62 | (31) |
|
|
62 | (4) |
|
5.2 Preliminary Definitions and Results |
|
|
66 | (3) |
|
5.3 A Region for Xilambda(z) With Only Real Zeros |
|
|
69 | (8) |
|
5.4 The Existence of Lambda |
|
|
77 | (1) |
|
5.5 Improved Lower Bounds for Lambda |
|
|
77 | (15) |
|
5.5.1 Lehmer's Phenomenon |
|
|
78 | (3) |
|
5.5.2 The Differential Equation Satisfied by H(t,z) |
|
|
81 | (6) |
|
5.5.3 Finding a Lower Bound for Ac Using Lehmer Pairs |
|
|
87 | (5) |
|
|
92 | (1) |
|
|
93 | (24) |
|
|
93 | (1) |
|
|
94 | (2) |
|
6.3 Orthogonal Polynomial Properties |
|
|
96 | (3) |
|
|
99 | (5) |
|
6.5 Quasi-Analytic Functions |
|
|
104 | (2) |
|
6.6 Carleman's Inequality |
|
|
106 | (7) |
|
6.7 Riemann Zeta Function Application |
|
|
113 | (3) |
|
|
116 | (1) |
|
|
117 | (10) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
119 | (5) |
|
7.4 Riemann Hypothesis Equivalences |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (23) |
|
|
127 | (2) |
|
|
129 | (4) |
|
8.3 The Method of Sekatskii, Beltraminelli and Merlini |
|
|
133 | (6) |
|
|
139 | (3) |
|
8.5 Levinson's Equivalence |
|
|
142 | (8) |
|
9 Weil's Explicit Formula, Inequality and Conjectures |
|
|
150 | (43) |
|
|
150 | (2) |
|
|
152 | (1) |
|
|
152 | (2) |
|
9.4 Weil's Explicit Formula |
|
|
154 | (5) |
|
|
159 | (7) |
|
9.6 Bombieri's Variational Approach to RH |
|
|
166 | (7) |
|
9.7 Introduction to the Weil Conjectures |
|
|
173 | (1) |
|
9.8 History of the Weil Conjectures |
|
|
174 | (2) |
|
|
176 | (2) |
|
9.10 The Weil Conjectures for Varieties |
|
|
178 | (1) |
|
|
178 | (4) |
|
9.12 Weil Conjectures for Elliptic Curves-Preliminary Results |
|
|
182 | (4) |
|
9.13 Proof of the Weil Conjectures for Elliptic Curves |
|
|
186 | (2) |
|
9.14 General Curves Over Fq and Applications |
|
|
188 | (2) |
|
9.15 Return to the Explicit Formula |
|
|
190 | (2) |
|
9.16 Weil's Commentary on his 1952 and 1972 Papers |
|
|
192 | (1) |
|
|
193 | (28) |
|
|
193 | (1) |
|
|
194 | (1) |
|
|
195 | (2) |
|
10.4 A Mellin-Style Transform |
|
|
197 | (3) |
|
10.5 Verjovsky's Theorems |
|
|
200 | (6) |
|
10.6 Historical Development of Non-Euclidean Geometry |
|
|
206 | (2) |
|
10.7 The Hyperbolic Upper Half Plane H |
|
|
208 | (1) |
|
10.8 The Groups PSL(2,R) and PSL(2,Z) |
|
|
209 | (2) |
|
|
211 | (5) |
|
10.10 Zagier's Horocycle Equivalence |
|
|
216 | (3) |
|
|
219 | (2) |
|
|
221 | (53) |
|
|
221 | (2) |
|
|
223 | (3) |
|
|
226 | (2) |
|
|
228 | (3) |
|
11.5 The Restriction to C(a) for All a > 0 |
|
|
231 | (5) |
|
11.6 Properties of K(a) and K(a) |
|
|
236 | (6) |
|
|
242 | (5) |
|
11.8 An Explicit Example With a = log square root of 2 |
|
|
247 | (11) |
|
11.9 Lemmas for Yoshida's Main Theorem |
|
|
258 | (2) |
|
11.10 Hermitian Forms Lemma |
|
|
260 | (9) |
|
11.11 Yoshida's Main Theorem |
|
|
269 | (1) |
|
11.12 The Restriction to K(a) for All a > 0 |
|
|
270 | (4) |
|
|
274 | (58) |
|
|
274 | (3) |
|
|
277 | (6) |
|
12.3 Properties of L(s,chi) |
|
|
283 | (1) |
|
12.4 The Non-Vanishing of L(1,chi) |
|
|
284 | (4) |
|
12.5 Zero-Free Regions and Siegel Zeros |
|
|
288 | (7) |
|
12.6 Preliminary Results for Titchmarsh's Criterion |
|
|
295 | (1) |
|
12.7 Titchmarsh's GRH Equivalence |
|
|
296 | (2) |
|
12.8 Preliminary Results for Gallagher's Theorem |
|
|
298 | (4) |
|
12.9 Gallagher's Theorems |
|
|
302 | (5) |
|
12.10 Applications of Gallagher's Theorems |
|
|
307 | (4) |
|
12.11 The Bombieri-Vinogradov Theorem |
|
|
311 | (12) |
|
12.12 Applications of Bombieri-Vinogradov's Theorem |
|
|
323 | (3) |
|
12.13 Generalizations and Developments for Bombieri-Vinogradov |
|
|
326 | (1) |
|
|
327 | (5) |
|
|
332 | (27) |
|
|
332 | (3) |
|
13.2 The Dickman Function |
|
|
335 | (11) |
|
13.3 Preliminary Lemmas for Hildebrand's Equivalence |
|
|
346 | (3) |
|
13.4 Riemann Hypothesis Equivalence |
|
|
349 | (8) |
|
|
357 | (2) |
|
|
359 | (2) |
|
Appendix A: Convergence of Series |
|
|
361 | (2) |
|
Appendix B: Complex Function Theory |
|
|
363 | (14) |
|
Appendix C: The Riemann-Stieltjes Integral |
|
|
377 | (4) |
|
Appendix D: The Lebesgue Integral on Real Numbers |
|
|
381 | (7) |
|
Appendix E: The Fourier Transform |
|
|
388 | (17) |
|
Appendix F: The Laplace Transform |
|
|
405 | (4) |
|
Appendix G: The Mellin Transform |
|
|
409 | (9) |
|
Appendix H: The Gamma Function |
|
|
418 | (7) |
|
Appendix I: The Riemann Zeta Function |
|
|
425 | (17) |
|
Appendix J: Banach and Hilbert Spaces |
|
|
442 | (9) |
|
Appendix K: Miscellaneous Background Results |
|
|
451 | (8) |
|
Appendix L: GRHpack Mini-Manual |
|
|
459 | (14) |
|
|
459 | (2) |
|
|
459 | (1) |
|
L.1.2 About This Mini-Manual |
|
|
460 | (1) |
|
|
461 | (12) |
|
|
473 | (12) |
|
|
485 | |