Atnaujinkite slapukų nuostatas

El. knyga: Equivalents of the Riemann Hypothesis: Volume 3, Further Steps towards Resolving the Riemann Hypothesis

(University of Waikato, New Zealand)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, RogersTaoDobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical PólyaJensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability.

Daugiau informacijos

This third volume presents further equivalents to the Riemann hypothesis and explores its decidability.
1. Nicolas' (x) < li((x)) equivalence;
2. Nicolas' number of divisors
function equivalence;
3. An aspect of the zeta function zero gap estimates;
4. The RogersTao equivalence;
5. The Dirichlet series of Dobner;
6. An upper
bound for the deBruijnNewman constant;
7. The PólyaJensen equivalence;
8.
Ono et al. and Jensen polynomials;
9. GonekBagchi universality and Bagchi's
equivalence;
10. A selection of undecidable propositions;
11. Equivalences
and decidability for Riemann's zeta; A. Imports for Gonek's theorems; B.
Imports for Nicolas' theorems; C. Hyperbolic polynomials; D. Absolute
continuity; E. Montel and Hurwitz's theorems; F. Markov and Gronwall's
inequalities; G. Characterizing Riemann's zeta function; H. Bohr's theorem;
I. Zeta and L-functions; J. de Reyna's expansion for the Hardy contour; K.
Stirling's approximation for the gamma function; L. Propositional calculus
$\mathscr{P}_0$; M. First order predicate calculus $\mathscr{P}_1$; N.
Recursive functions; O. Ordinal numbers and analysis; References; Index
Kevin Broughan is an emeritus professor at the University of Waikato, New Zealand. He cofounded and is a fellow of the New Zealand Mathematical Society and the School of Computing and Mathematical Sciences. Broughan previously authored Volumes 1 and 2 of 'Equivalents of the Riemann Hypothesis' (Cambridge 2017) and 'Bounded Gaps Between Primes' (Cambridge 2021). He also wrote the software package that is part of Dorian Goldfeld's book 'Automrphic Forms and L-Functions for the Group GL(n,R)' (Cambridge 2006).