Preface |
|
xiii | |
1 The Erdos-Ko-Rado Theorem |
|
1 | (23) |
|
|
2 | (4) |
|
1.2 Non-canonical intersecting set systems |
|
|
6 | (1) |
|
1.3 The complete Erdos-Ko-Rado Theorem |
|
|
7 | (3) |
|
1.4 The shifting technique |
|
|
10 | (1) |
|
1.5 The Kruskal-Katona Theorem |
|
|
11 | (4) |
|
1.6 The Hilton-Milner Theorem |
|
|
15 | (2) |
|
1.7 Cross-intersecting sets |
|
|
17 | (2) |
|
|
19 | (2) |
|
|
21 | (3) |
2 Bounds on cocliques |
|
24 | (25) |
|
2.1 A clique-coclique bound |
|
|
24 | (3) |
|
|
27 | (2) |
|
|
29 | (1) |
|
2.4 The ratio bound for cocliques |
|
|
30 | (3) |
|
2.5 Application: Erdos-Ko-Rado |
|
|
33 | (2) |
|
2.6 A ratio bound for cliques |
|
|
35 | (1) |
|
2.7 Ratio bound for cross cocliques |
|
|
36 | (2) |
|
2.8 Cocliques in neighborhoods |
|
|
38 | (1) |
|
|
39 | (1) |
|
2.10 Inertia bound: Kneser graphs |
|
|
40 | (1) |
|
2.11 Inertia bound: folded cubes |
|
|
40 | (1) |
|
2.12 Fractional chromatic number |
|
|
41 | (2) |
|
|
43 | (1) |
|
|
44 | (1) |
|
|
45 | (4) |
3 Association schemes |
|
49 | (21) |
|
|
50 | (1) |
|
|
51 | (1) |
|
3.3 The conjugacy class scheme |
|
|
52 | (2) |
|
3.4 A basis of idempotents |
|
|
54 | (4) |
|
3.5 Some fundamental identities |
|
|
58 | (2) |
|
|
60 | (2) |
|
|
62 | (2) |
|
3.8 The clique-coclique bound |
|
|
64 | (4) |
|
|
68 | (2) |
4 Distance-regular graphs |
|
70 | (17) |
|
|
71 | (2) |
|
4.2 A three-term recurrence |
|
|
73 | (1) |
|
|
74 | (2) |
|
4.4 Intersection numbers and Krein parameters |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (4) |
|
|
83 | (1) |
|
|
84 | (3) |
5 Strongly regular graphs |
|
87 | (25) |
|
5.1 An association scheme |
|
|
87 | (1) |
|
|
88 | (2) |
|
|
90 | (4) |
|
|
94 | (2) |
|
|
96 | (4) |
|
|
100 | (3) |
|
5.7 Eigenspaces of point and line graphs |
|
|
103 | (2) |
|
|
105 | (2) |
|
5.9 Paley graphs of square order |
|
|
107 | (1) |
|
|
108 | (4) |
6 The Johnson scheme |
|
112 | (14) |
|
6.1 Graphs in the Johnson scheme |
|
|
112 | (2) |
|
|
114 | (2) |
|
6.3 Eigenvalues of the Johnson graph |
|
|
116 | (2) |
|
|
118 | (2) |
|
6.5 Eigenvalues of the Johnson scheme |
|
|
120 | (2) |
|
|
122 | (1) |
|
|
123 | (3) |
7 Polytopes |
|
126 | (9) |
|
|
126 | (2) |
|
7.2 A polytope from the Johnson graph |
|
|
128 | (1) |
|
7.3 Perfect matching polytopes |
|
|
129 | (2) |
|
7.4 Perfect matchings in complete graphs |
|
|
131 | (2) |
|
7.5 Perfect matchings in complete bipartite graphs |
|
|
133 | (1) |
|
|
133 | (2) |
8 The exact bound in the EKR Theorem |
|
135 | (26) |
|
8.1 A certificate for maximality |
|
|
135 | (4) |
|
|
139 | (1) |
|
8.3 The EKR bound for 2-intersecting sets |
|
|
140 | (2) |
|
|
142 | (2) |
|
8.5 Eigenvalues of Wilson's matrix |
|
|
144 | (4) |
|
|
148 | (2) |
|
8.7 Equality in the width bound |
|
|
150 | (1) |
|
8.8 Intersecting families of maximum size |
|
|
151 | (2) |
|
8.9 Equality in the dual width bound |
|
|
153 | (4) |
|
|
157 | (2) |
|
|
159 | (2) |
9 The Grassmann scheme |
|
161 | (23) |
|
9.1 q-Binomial coefficients |
|
|
162 | (1) |
|
9.2 q-Commuting variables |
|
|
162 | (2) |
|
|
164 | (3) |
|
9.4 Subspace incidence matrices |
|
|
167 | (2) |
|
|
169 | (1) |
|
9.6 Eigenvalues of the Grassmann scheme |
|
|
170 | (2) |
|
9.7 The EKR bound for q-Kneser graphs |
|
|
172 | (1) |
|
9.8 Cocliques in the q-Kneser graphs |
|
|
173 | (2) |
|
9.9 t-Intersecting families |
|
|
175 | (1) |
|
9.10 The certifying matrix |
|
|
176 | (4) |
|
9.11 Bilinear forms graphs |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
182 | (2) |
10 The Hamming scheme |
|
184 | (26) |
|
10.1 Eigenvalues of the Hamming scheme |
|
|
185 | (2) |
|
|
187 | (2) |
|
|
189 | (2) |
|
10.4 The EKR Theorem for words |
|
|
191 | (2) |
|
10.5 The complete EKR for words |
|
|
193 | (1) |
|
10.6 Cross-intersecting sets of words |
|
|
194 | (1) |
|
10.7 An operation on words |
|
|
195 | (1) |
|
10.8 Bounds on the size of a derived set |
|
|
196 | (4) |
|
10.9 Cocliques in power graphs |
|
|
200 | (3) |
|
10.10 Cocliques in product graphs |
|
|
203 | (5) |
|
|
208 | (2) |
11 Representation theory |
|
210 | (22) |
|
|
210 | (1) |
|
|
211 | (1) |
|
11.3 Operations on representations |
|
|
212 | (2) |
|
11.4 Sums and idempotents |
|
|
214 | (1) |
|
11.5 Irreducible representations |
|
|
215 | (2) |
|
|
217 | (1) |
|
11.7 Coordinate functions |
|
|
218 | (2) |
|
|
220 | (1) |
|
11.9 Orthogonality of characters |
|
|
221 | (2) |
|
11.10 Decomposing the regular representation |
|
|
223 | (2) |
|
11.11 The conjugacy class scheme: idempotents |
|
|
225 | (1) |
|
11.12 The conjugacy class scheme: eigenvalues |
|
|
226 | (2) |
|
11.13 Restriction and induction |
|
|
228 | (2) |
|
|
230 | (2) |
12 Representation theory of the symmetric group |
|
232 | (13) |
|
12.1 Permutation representations |
|
|
232 | (1) |
|
12.2 Examples: orbit counting |
|
|
233 | (2) |
|
|
235 | (1) |
|
12.4 Irreducible representations |
|
|
235 | (2) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
239 | (3) |
|
|
242 | (1) |
|
|
243 | (2) |
13 Orbitals |
|
245 | (15) |
|
13.1 Arc-transitive directed graphs |
|
|
245 | (2) |
|
13.2 Commutants of permutation groups |
|
|
247 | (1) |
|
13.3 Generously transitive groups |
|
|
248 | (1) |
|
13.4 Multiplicity-free representations |
|
|
249 | (1) |
|
13.5 Multiplicity-free representations of the symmetric group |
|
|
250 | (1) |
|
13.6 An equitable partition |
|
|
251 | (2) |
|
|
253 | (1) |
|
13.8 Eigenvalues of the orbital scheme |
|
|
254 | (2) |
|
13.9 Eigenspaces and Young subgroups |
|
|
256 | (2) |
|
|
258 | (2) |
14 Permutations |
|
260 | (19) |
|
14.1 The derangement graph |
|
|
261 | (1) |
|
14.2 Eigenvalues of the derangement graph |
|
|
262 | (2) |
|
14.3 An eigenspace of the derangement graph |
|
|
264 | (2) |
|
14.4 Cocliques in the derangement graphs |
|
|
266 | (2) |
|
14.5 t-Intersecting permutations |
|
|
268 | (1) |
|
14.6 Transitive permutation groups |
|
|
269 | (2) |
|
14.7 2-Transitive subgroups |
|
|
271 | (4) |
|
|
275 | (1) |
|
|
276 | (3) |
15 Partitions |
|
279 | (29) |
|
15.1 Intersecting partitions |
|
|
280 | (2) |
|
|
282 | (2) |
|
15.3 Eigenvalues of the perfect matching graph |
|
|
284 | (1) |
|
15.4 The perfect matching association scheme |
|
|
285 | (1) |
|
15.5 Modules of the perfect matching graph |
|
|
286 | (3) |
|
15.6 EKR Theorem for perfect matchings |
|
|
289 | (1) |
|
|
289 | (2) |
|
15.8 Cliques and cocliques in the skew-partition graph |
|
|
291 | (2) |
|
15.9 Eigenvalues of the skew-partition graph |
|
|
293 | (2) |
|
15.10 Eigenspaces of the skew-partition graph |
|
|
295 | (3) |
|
|
298 | (1) |
|
15.12 Inner distributions of cliques |
|
|
299 | (2) |
|
15.13 Characterizing cocliques |
|
|
301 | (1) |
|
|
302 | (3) |
|
|
305 | (3) |
16 Open problems |
|
308 | (13) |
|
16.1 Generalize the ratio bound for cliques |
|
|
308 | (1) |
|
16.2 Extend the Katona cycle proof |
|
|
309 | (1) |
|
16.3 Prove the EKR Theorem for the block graph of a design |
|
|
310 | (1) |
|
16.4 Prove the EKR Theorem for the orthogonal array graph |
|
|
311 | (1) |
|
16.5 Find an algebraic proof of the EKR Theorem for the Paley graphs |
|
|
311 | (1) |
|
16.6 Determine the chromatic number of the Johnson graphs |
|
|
312 | (1) |
|
16.7 Prove the EKR Theorem for 2-transitive groups |
|
|
313 | (1) |
|
16.8 Determine cocliques in groups that do not have the EKR property |
|
|
314 | (1) |
|
16.9 Prove the EKR property holds for other group actions |
|
|
315 | (1) |
|
16.10 Calculate the eigenvalues of the perfect matching scheme |
|
|
315 | (1) |
|
16.11 Prove the EKR Theorem for partitions |
|
|
316 | (1) |
|
16.12 Prove EKR Theorems for other objects |
|
|
317 | (1) |
|
16.13 Find maximal cocliques in graphs from an orbital scheme |
|
|
318 | (1) |
|
16.14 Develop other compression operations |
|
|
319 | (2) |
Glossary: Symbols |
|
321 | (2) |
Glossary: Operations and relations |
|
323 | (1) |
References |
|
324 | (8) |
Index |
|
332 | |