|
|
|
1 The Mean Ergodic Theorem |
|
|
3 | (12) |
|
|
3 | (1) |
|
1.2 The Mean Ergodic Theorem |
|
|
4 | (4) |
|
1.3 Application to Classical Mechanics |
|
|
8 | (4) |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.4.2 More Advanced Exercises |
|
|
13 | (1) |
|
|
13 | (2) |
|
2 The Pointwise Ergodic Theorem |
|
|
15 | (10) |
|
|
15 | (1) |
|
2.2 The Pointwise Ergodic Theorem |
|
|
16 | (4) |
|
2.3 Ergodicity of the Shift |
|
|
20 | (3) |
|
|
23 | (1) |
|
|
23 | (1) |
|
2.4.2 More Advanced Exercises |
|
|
23 | (1) |
|
|
24 | (1) |
|
|
25 | (10) |
|
|
25 | (1) |
|
|
26 | (1) |
|
3.3 Example: Multiplication by 2 |
|
|
27 | (1) |
|
3.4 Example: The Bernoulli Shift |
|
|
28 | (1) |
|
3.5 Example: Toral Endomorphisms |
|
|
28 | (3) |
|
|
31 | (1) |
|
|
31 | (1) |
|
3.6.2 More Advanced Exercises |
|
|
31 | (1) |
|
|
32 | (3) |
|
|
35 | (14) |
|
|
35 | (1) |
|
4.2 Stable Foliation and Invariant Functions |
|
|
36 | (2) |
|
4.3 Application to Toral Automorphisms |
|
|
38 | (1) |
|
4.4 Flows on the Quotients of PSL2 (R) |
|
|
39 | (4) |
|
|
43 | (1) |
|
|
43 | (1) |
|
4.5.2 More Advanced Exercises |
|
|
44 | (1) |
|
|
44 | (5) |
|
Part II Dynamical Systems |
|
|
|
|
49 | (10) |
|
|
49 | (1) |
|
5.2 Transitivity and Topological Mixing |
|
|
50 | (2) |
|
5.3 Recurrent Points and the Nonwandering Set |
|
|
52 | (3) |
|
|
55 | (1) |
|
|
55 | (1) |
|
5.4.2 More Advanced Exercises |
|
|
55 | (1) |
|
|
56 | (3) |
|
|
59 | (10) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
|
6.4 The Graph Associated with the Dynamical System |
|
|
63 | (2) |
|
|
65 | (1) |
|
|
65 | (1) |
|
6.5.2 More Advanced Exercises |
|
|
65 | (1) |
|
|
66 | (3) |
|
|
69 | (10) |
|
|
69 | (1) |
|
7.2 Conjugation and Semiconjugation |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (1) |
|
7.5 Schroder's Examples (1871) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
7.6.2 More Advanced Exercises |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (10) |
|
|
79 | (1) |
|
8.2 The Hyperbolic Fixed Point Theorem |
|
|
80 | (1) |
|
8.3 The Linearization Theorem, Lipschitz Case |
|
|
80 | (2) |
|
8.4 The Linearization Theorem, Differentiable Case |
|
|
82 | (4) |
|
|
86 | (1) |
|
|
86 | (1) |
|
8.5.2 More Advanced Exercises |
|
|
86 | (1) |
|
|
87 | (2) |
|
|
89 | (12) |
|
|
89 | (1) |
|
9.2 Perturbation of a Toral Automorphism |
|
|
90 | (2) |
|
|
92 | (1) |
|
9.4 Transitivity and the Mixing Property |
|
|
93 | (3) |
|
|
96 | (1) |
|
|
96 | (1) |
|
9.5.2 More Advanced Exercises |
|
|
96 | (1) |
|
|
97 | (4) |
|
|
|
|
101 | (12) |
|
|
101 | (1) |
|
10.2 Definition of Entropy |
|
|
102 | (2) |
|
10.3 Properties of Entropy |
|
|
104 | (1) |
|
10.4 Generating Partitions |
|
|
105 | (2) |
|
10.5 Entropy and Isomorphisms |
|
|
107 | (3) |
|
|
110 | (1) |
|
|
110 | (1) |
|
10.6.2 More Advanced Exercises |
|
|
111 | (1) |
|
|
111 | (2) |
|
11 Entropy and Information Theory |
|
|
113 | (10) |
|
|
113 | (1) |
|
11.2 The Notion of Information |
|
|
114 | (1) |
|
11.3 The Game of Questions and Answers |
|
|
115 | (1) |
|
11.4 Information and Markov Chains |
|
|
115 | (3) |
|
11.5 Interpretation in the Dynamical Setting |
|
|
118 | (1) |
|
|
119 | (1) |
|
|
119 | (1) |
|
11.6.2 More Advanced Exercise |
|
|
120 | (1) |
|
|
120 | (3) |
|
|
123 | (12) |
|
|
123 | (1) |
|
|
124 | (2) |
|
|
126 | (1) |
|
12.4 Entropy of Dilating Transformations |
|
|
127 | (3) |
|
|
130 | (1) |
|
|
130 | (1) |
|
12.5.2 More Advanced Exercises |
|
|
131 | (1) |
|
|
131 | (4) |
|
Part IV Ergodic Decomposition |
|
|
|
13 Lebesgue Spaces and Isomorphisms |
|
|
135 | (10) |
|
|
135 | (1) |
|
13.2 Measurable Isomorphism |
|
|
136 | (2) |
|
|
138 | (2) |
|
13.4 The Measurable Stone--Weierstra B Theorem |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
142 | (1) |
|
13.5.2 More Advanced Exercises |
|
|
142 | (1) |
|
|
143 | (2) |
|
|
145 | (10) |
|
|
145 | (1) |
|
|
146 | (2) |
|
14.3 Ergodic Decomposition |
|
|
148 | (4) |
|
|
152 | (1) |
|
|
152 | (1) |
|
14.4.2 More Advanced Exercises |
|
|
153 | (1) |
|
|
153 | (2) |
|
15 Measurable Partitions and σ-Algebras |
|
|
155 | (12) |
|
|
155 | (1) |
|
15.2 Measurable Partitions |
|
|
156 | (1) |
|
15.3 The σ-Algebra Associated with a Partition |
|
|
157 | (1) |
|
15.4 The Partition Associated with a σ-Algebra |
|
|
157 | (2) |
|
15.5 Factors and Partitions |
|
|
159 | (1) |
|
15.6 σ-Algebras and Algebras of Functions |
|
|
160 | (1) |
|
15.7 The Rokhlin Correspondence |
|
|
160 | (2) |
|
|
162 | (5) |
|
|
162 | (1) |
|
15.8.2 More Advanced Exercises |
|
|
163 | (4) |
|
|
|
|
167 | (4) |
|
16.1 Convergence in a Hilbert Space |
|
|
167 | (1) |
|
16.2 Weak Sequential Compactness |
|
|
168 | (1) |
|
16.3 Convex Closed Subsets |
|
|
169 | (2) |
|
17 Conditional Expectation |
|
|
171 | (4) |
|
17.1 Definition of the Conditional Expectation |
|
|
171 | (1) |
|
17.2 Properties of the Conditional Expectation |
|
|
172 | (1) |
|
17.3 The Martingale Convergence Theorem in L2 |
|
|
172 | (3) |
|
|
175 | (6) |
|
|
175 | (1) |
|
18.2 The Support of a Measure |
|
|
175 | (1) |
|
18.3 Density in the LP Spaces |
|
|
176 | (2) |
|
|
178 | (1) |
|
|
179 | (2) |
Notation |
|
181 | (2) |
References |
|
183 | (2) |
Index |
|
185 | (4) |
Author Index |
|
189 | |