Atnaujinkite slapukų nuostatas

El. knyga: Ergodic Theory: Independence and Dichotomies

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book provides an introduction to the ergodic theory and topological dynamics of actions of countable groups. It is organized around the theme of probabilistic and combinatorial independence, and highlights the complementary roles of the asymptotic and the perturbative in its comprehensive treatment of the core concepts of weak mixing, compactness, entropy, and amenability. The more advanced material includes Popa"s cocycle superrigidity, the Furstenberg-Zimmer structure theorem, and sofic entropy.The structure of the book is designed to be flexible enough to serve a variety of readers. The discussion of dynamics is developed from scratch assuming some rudimentary functional analysis, measure theory, and topology, and parts of the text can be used as an introductory course. Researchers in ergodic theory and related areas will also find the book valuable as a reference.

Preface.- Introduction.- General Framework and Notational Conventions.- Part 1 Weak Mixing Comactness.- Basic Concepts in Ergodic Theory.- Structure Theory for P.M.P. Actions.- Amenability.- Property (T).- Orbit Equivalence Beyond Amenability.- Topological Dynamics.- Tameness and Independence.- Part 2 Entropy.- Entropy for Actions of Amenable Groups.- Entropy for Actions of Sofic Groups.- The f-invariant.- Entropy and Independence.- Algebraic Actions: Expansiveness, Homoclinicity, and Entropy.- Algebraic Actions: Entropy and the Fuglede-Kadison Determinant.- Appendix A. Polish Spaces and Standard Borel Spaces.- Appendix B. Positive Definite Functions and Weak Containment.- Appendix C. Hilbert Modules.- Appendix D. Weakly Almost Periodic Functions.- Appendix E. Gaussian Actions.
1 General Framework and Notational Conventions
1(20)
1.1 Groups
1(1)
1.2 Probability Spaces
1(1)
1.3 Measure Algebras
2(1)
1.4 Standard Probability Spaces
3(1)
1.5 Group Actions
4(3)
1.6 Measure Conjugacy Versus Measure Algebra Conjugacy
7(2)
1.7 Function Spaces
9(1)
1.8 Hilbert Space Operators and Unitary Representations
10(4)
1.9 The Koopman Representation
14(1)
1.10 Conditional Expectations
14(1)
1.11 The Spectral Theorem and the Borel Functional Calculus
15(2)
1.12 C*-Algebras and von Neumann Algebras
17(4)
Part I Weak Mixing and Compactness
2 Basic Concepts in Ergodic Theory
21(28)
2.1 Ergodicity, Freeness, and Poincare recurrence
21(5)
2.2 Mixing, Weak Mixing, and Compactness
26(10)
2.3 Examples
36(11)
2.3.1 Bernoulli Actions
36(4)
2.3.2 Rotations of the Circle
40(1)
2.3.3 Skew Transformations of the Torus
41(1)
2.3.4 Odometers
42(1)
2.3.5 Actions by Automorphisms of Compact Groups
43(2)
2.3.6 Gaussian Actions
45(2)
2.4 Notes and References
47(2)
3 Structure Theory for p.m.p. Actions
49(24)
3.1 Hilbert Modules from Factors of Probability Spaces
50(6)
3.2 The Furstenberg---Zimmer Structure Theorem
56(8)
3.3 Multiple Recurrence and Szemeredi's Theorem
64(8)
3.3.1 SMR is Preserved Under Weakly Mixing Extensions
65(4)
3.3.2 SMR is Preserved Under Compact Extensions
69(2)
3.3.3 SMR and Szemeredi's Theorem
71(1)
3.4 Notes and References
72(1)
4 Amenability
73(58)
4.1 Basic Theory
74(6)
4.2 Amenability and Unitary Representations
80(5)
4.3 Ergodicity, Weak Mixing, and the Mean Ergodic Theorem
85(2)
4.4 The Pointwise Ergodic Theorem
87(4)
4.5 Quasitilings and the Subadditivity Theorem
91(5)
4.6 The Ornstein--Weiss Quasitower Theorem
96(6)
4.7 Asymptotic Averages as Infima
102(2)
4.8 The Connes--Feldman--Weiss Theorem
104(17)
4.8.1 P.m.p. Equivalence Relations
105(3)
4.8.2 Amenability, Hyperfiniteness, and Reiter's Property
108(6)
4.8.3 The Connes--Feldman--Weiss Theorem
114(7)
4.9 Dye's Theorem and the Ornstein--Weiss Theorem
121(6)
4.10 Notes and References
127(4)
5 Property (T)
131(16)
5.1 Basic Theory
132(2)
5.2 Characterization in Terms of Isolated Points in the Unitary Dual
134(4)
5.3 Characterization in Terms of Weak Mixing
138(2)
5.4 Characterization in Terms of Strong Ergodicity
140(2)
5.5 Generic Weak Mixing and Property (T)
142(3)
5.6 Notes and References
145(2)
6 Orbit Equivalence Beyond Amenability
147(16)
6.1 Popa's Cocycle Superrigidity
148(9)
6.2 Bernoulli Actions Over Free Groups
157(5)
6.3 Notes and References
162(1)
7 Topological Dynamics
163(16)
7.1 Minimality, Topological Transitivity, and Birkhoff Recurrence
163(5)
7.2 Weak Mixing and Equicontinuity
168(4)
7.3 Proximality, Distality, and Structure Theorems
172(5)
7.4 Notes and References
177(2)
8 Tameness and Independence
179(14)
8.1 Ramsey Theory and a Dichotomy of Rosenthal
180(2)
8.2 Tameness and IT-Tuples
182(4)
8.3 Weak Mixing and Independence
186(1)
8.4 When Tameness and Equicontinuity are Equivalent
187(2)
8.5 Notes and References
189(4)
Part II Entropy
9 Entropy for Actions of Amenable Groups
193(38)
9.1 Shannon Entropy
194(2)
9.2 Properties of Shannon Entropy
196(2)
9.3 Amenable Measure Entropy
198(1)
9.4 The Generator Theorem
199(2)
9.5 Bernoulli Actions
201(1)
9.6 Compact Actions
201(2)
9.7 Conditional Dynamical Entropy and the Addition Formula
203(5)
9.8 The Shannon--McMillan--Breiman Theorem
208(12)
9.9 Amenable Topological Entropy
220(4)
9.10 The Variational Principle
224(4)
9.11 Notes and References
228(3)
10 Entropy for Actions of Sofic Groups
231(38)
10.1 Boltzmann Entropy
232(2)
10.2 Sofic Groups
234(2)
10.3 Sofic Measure Entropy
236(4)
10.4 The Generator Theorem
240(4)
10.5 Bernoulli Actions
244(3)
10.6 Compact Actions
247(1)
10.7 Sofic Topological Entropy
248(4)
10.8 Subshifts and Gottschalk's Surjunctivity Conjecture
252(2)
10.9 Sofic Measure Entropy Revisited
254(4)
10.10 The Variational Principle for Sofic Entropy
258(4)
10.11 The Relation Between Sofic and Amenable Entropy
262(4)
10.12 Notes and References
266(3)
11 The ƒ-Invariant
269(14)
11.1 Definition of the ƒ-Invariant
270(2)
11.2 Bernoulli Actions
272(1)
11.3 Relation with Sofic Entropy
273(9)
11.4 Notes and References
282(1)
12 Entropy and Independence
283(26)
12.1 Actions of Amenable Groups on Zero-Dimensional Spaces
284(2)
12.2 Actions of Amenable Groups
286(9)
12.3 Subfactorization of Positive Independence Density and the Sociology of IE-Tuples
295(4)
12.4 The Topological Pinsker Factor for Actions of Amenable Groups
299(1)
12.5 Actions of Sofic Groups
300(5)
12.6 Measure IE-Tuples for Actions of Amenable Groups
305(2)
12.7 Notes and References
307(2)
13 Algebraic Actions: Expansiveness, Homoclinicity, and Entropy
309(36)
13.1 Preliminaries on Algebraic Actions
310(4)
13.2 Expansive Algebraic Actions
314(3)
13.3 p-Expansiveness
317(2)
13.4 Finitely Presented Algebraic Actions: Expansiveness and Finite Entropy
319(5)
13.5 The IE-Group
324(1)
13.6 The p-Homoclinic Group
325(4)
13.7 Finite Generation Implies Inclusion of the 1-Homoclinic Group in the IE-Group
329(2)
13.8 The Entropy of an Algebraic Action in Terms of its Dual Action
331(4)
13.9 The Entropy Addition Formula
335(5)
13.10 Expansive Algebraic Actions: Entropy and Homoclinicity
340(4)
13.11 Notes and References
344(1)
14 Algebraic Actions: Entropy and the Fuglede--Kadison Determinant
345(20)
14.1 The Fuglede--Kadison Determinant
346(1)
14.2 Spectral Analysis and Sofic Approximation
347(5)
14.3 The Determinant as Metric Growth Across a Sofic Approximation Sequence
352(6)
14.4 Entropy and the Fuglede--Kadison Determinant
358(4)
14.5 Notes and References
362(3)
Appendix A Polish Spaces and Standard Borel Spaces 365(8)
Appendix B Positive Definite Functions and Weak Containment 373(10)
Appendix C Hilbert Modules 383(8)
Appendix D Weakly Almost Periodic Functions 391(12)
Appendix E Gaussian Actions 403(12)
Bibliography 415(10)
Index 425