Atnaujinkite slapukų nuostatas

El. knyga: ESD Handbook

  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Mar-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119233107
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 02-Mar-2021
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119233107
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

A practical and comprehensive reference that explores Electrostatic Discharge (ESD) in semiconductor components and electronic systems 

The ESD Handbook offers a comprehensive reference that explores topics relevant to ESD design in semiconductor components and explores ESD in various systems. Electrostatic discharge is a common problem in the semiconductor environment and this reference fills a gap in the literature by discussing ESD protection. Written by a noted expert on the topic, the text offers a topic-by-topic reference that includes illustrative figures, discussions, and drawings.

The handbook covers a wide-range of topics including ESD in manufacturing (garments, wrist straps, and shoes); ESD Testing; ESD device physics; ESD semiconductor process effects; ESD failure mechanisms; ESD circuits in different technologies (CMOS, Bipolar, etc.); ESD circuit types (Pin, Power, Pin-to-Pin, etc.); and much more. In addition, the text includes a glossary, index, tables, illustrations, and a variety of case studies.

  • Contains a well-organized reference that provides a quick review on a range of ESD topics
  • Fills the gap in the current literature by providing information from purely scientific and physical aspects to practical applications
  • Offers information in clear and accessible terms
  • Written by the accomplished author of the popular ESD book series

Written for technicians, operators, engineers, circuit designers, and failure analysis engineers, The ESD Handbook contains an accessible reference to ESD design and ESD systems. 

About the Author xxxvii
Acknowledgements xxxix
1 ESD, EOS, EMI, EMC, and Latchup 1(20)
1.1 Electrostatic Discharge (ESD)
1(1)
1.1.1 What Do You Mean by the Term "Electrostatic Discharge"?
1(1)
1.2 Human Body Model (HBM)
2(1)
1.2.1 Why Do We Have a Human Body Model?
2(1)
1.2.1.1 What Does it Characterize?
2(1)
1.3 Machine Model (MM)
3(1)
1.3.1 What is the Purpose of the Machine Model?
3(1)
1.3.1.1 How is it Different from the Human Body Model?
3(1)
1.4 Cassette Model
3(1)
1.4.1 Why Do We Have a Cassette Model? What Does it Represent?
3(1)
1.5 Charged Device Model (CDM)
4(1)
1.5.1 What is the Charged Device Model?
4(1)
1.5.1.1 Why is it Important?
4(1)
1.6 Transmission Line Pulse (TLP)
5(3)
1.6.1 Why was the TLP Model Introduced?
5(3)
1.6.1.1 Why is it So Valuable for Circuit Designers and ESD Engineers?
5(3)
1.7 Very Fast Transmission Line Pulse (VF-TLP)
8(1)
1.7.1 Why Do We Need to Evaluate VF-TLP?
8(1)
1.8 Electrical Overstress (EOS)
8(1)
1.9 Electrical Overstress (EOS)
8(1)
1.9.1 How is EOS Differ from ESD?
8(1)
1.10 EOS Sources - Lightning
9(1)
1.11 EOS Sources - Electromagnetic Pulse (EMP)
9(1)
1.12 EOS Sources - Machinery
10(1)
1.13 EOS Sources - Power Distribution
10(1)
1.14 EOS Sources - Switches, Relays, and Coils
10(1)
1.15 EOS Design Flow and Product Definition
10(1)
1.15.1 How Do You Add EOS to the Product Design Flow?
10(1)
1.16 EOS Sources - Design Issues
11(1)
1.17 Electromagnetic Interference (EMI)
12(1)
1.17.1 What Type of Products are Sensitive to EMI?
12(1)
1.18 Electromagnetic Compatibility (EMC)
13(1)
1.19 Latchup
13(1)
1.19.1 What is Latchup? Why is it Important?
13(1)
Questions and Answers
14(1)
1.20 Summary and Closing Comments
15(1)
References
15(6)
2 ESD in Manufacturing 21(34)
2.1 Flooring
21(1)
2.1.1 Question: Why is Flooring an ESD Issue?
21(1)
2.2 Work Surfaces
21(1)
2.2.1 Why are Worksurfaces an ESD Issue?
21(1)
2.3 Garments
22(1)
2.3.1 Question: Do Garments Play a Role in Charging of Products?
22(1)
2.4 Wrist Straps
22(1)
2.4.1 Why are Wrist Straps Required in a Manufacturing Environment?
22(1)
2.5 Shoes - Footwear
22(1)
2.5.1 How Do Shoes Influence Tribocharging?
22(1)
2.6 Ionization
23(1)
2.6.1 What is the Role of Ionization in Manufacturing?
23(1)
2.7 Clean Rooms
24(2)
2.7.1 Seating
24(2)
2.7.1.1 Why are Chairs a Charging Issue?
24(2)
2.8 Carts
26(1)
2.8.1 Why are Carts an ESD Issue?
26(1)
2.9 Shipping Tubes
26(1)
2.9.1 Why are Shipping Tubes a Problem?
26(1)
2.10 Trays
27(1)
2.10.1 What Application are Sensitive to ESD in Trays?
27(1)
2.11 Measurements
27(1)
2.11.1 Packaging and Shipping
27(1)
2.11.2 ESD Identification
27(1)
2.12 Verification
28(1)
2.12.1 ESD Program Management - Twelve Steps to Building an ESD Strategy
28(1)
2.13 Audit
28(1)
2.13.1 ESD Program Auditing
28(1)
2.14 Triboelectric Charging - How Does it Happen?
29(1)
2.15 Conductors, Semiconductors, and Insulators
30(1)
2.16 Static Dissipative Materials
30(1)
2.17 ESD and Materials
31(1)
2.18 Electrification and Coulomb's Law
31(2)
2.18.1 Electrification by Friction
32(1)
2.18.2 Electrification by Induction
32(1)
2.18.3 Electrification by Conduction
32(1)
2.19 Electromagnetism and Electrodynamics
33(1)
2.20 Electrical Breakdown
33(3)
2.20.1 Electrostatic Discharge and Breakdown
33(1)
2.20.2 Breakdown and Paschen's Law
33(1)
2.20.3 Breakdown and Townsend
34(1)
2.20.4 Breakdown and Toepler's Law
34(1)
2.20.5 Avalanche Breakdown
35(1)
2.21 Electro-Quasistatics and Magnetoquasistatics
36(1)
2.22 Electrodynamics and Maxwell's Equations
36(1)
2.23 Electrostatic Discharge (ESD)
36(1)
2.24 Electromagnetic Compatibility (EMC)
37(1)
2.25 Electromagnetic Interference (EMI)
37(1)
2.26 Fundamentals of Manufacturing and Electrostatics
37(1)
2.27 Materials, Tooling, Human Factors, and Electrostatic Discharge
38(1)
2.28 Materials and Human-induced Electric Fields
39(1)
2.29 Manufacturing Environment and Tooling
39(1)
2.30 Manufacturing Equipment and ESD Manufacturing Problems
39(1)
2.31 Manufacturing Materials
39(1)
2.32 Measurement and Test Equipment
40(1)
2.33 Manufacturing Testing for Compliance
41(1)
2.34 Grounding and Bonding Systems
42(1)
2.35 Work Surfaces
42(1)
2.36 Wrist Straps
43(1)
2.37 Constant Monitors
43(1)
2.38 Footwear
43(1)
2.39 Floors
44(1)
2.40 Personnel Grounding with Garments
44(1)
2.41 Garments
44(1)
2.42 Air Ionization
44(1)
2.43 Seating
45(1)
2.44 Packaging and Shipping
46(1)
2.45 Trays
46(1)
2.46 ESD Identification
46(1)
2.47 ESD Program Auditing
46(1)
2.48 ESD On-Chip Protection
47(1)
2.49 ESD, EOS, EMI, EMC, and Latchup
47(1)
2.49.1 ESD
47(1)
2.49.2 EOS
48(1)
2.49.3 EMI
48(1)
2.49.4 EMC
48(1)
2.50 Manufacturing Electrical Overstress (EOS)
48(2)
2.50.1 Manufacturing EOS Sources - Machinery
49(1)
2.50.2 Manufacturing EOS Sources - Power Distribution
49(1)
2.50.3 Manufacturing EOS Sources - Switches, Relays and Coils
49(1)
2.51 EMI
50(1)
2.52 EMC
50(1)
2.53 Summary and Closing Comments
50(1)
References
50(5)
3 ESD Standards 55(10)
3.1 Factory - Flooring
55(1)
3.1.1 Factory - Worksurfaces
55(1)
3.1.2 Factory - Ionization
55(1)
3.1.3 Factory - Garments
55(1)
3.1.4 Factory - Wrist Straps
55(1)
3.1.5 Factory - Grounding
56(1)
3.2 Factory - Resistance Measurement of Materials
56(2)
3.2.1 Components - HBM
56(1)
3.2.2 Components - MM
56(1)
3.2.3 Components - CDM
57(1)
3.2.4 Components - SDM
57(1)
3.2.5 Components - TLP
57(1)
3.2.6 Components - VF-TLP
57(1)
3.2.7 Systems - IEC 61000-4-2
58(1)
3.2.8 Systems - Cable Discharge Event (CDE)
58(1)
3.2.9 Components - HMM
58(1)
3.3 JEDEC
58(1)
3.4 International Electro-Technical Commission (IEC)
59(1)
3.5 IEEE
59(1)
3.6 Department of Defense (DOD)
59(1)
3.7 Military Standards
59(1)
3.8 SAE
60(1)
3.9 Summary and Closing Comments
60(1)
Questions and Answers
60(1)
References
61(4)
4 ESD Testing 65(52)
4.1 Electrostatic Discharge (ESD) Testing
65(1)
4.2 ESD Models
65(4)
4.2.1 Human Body Model (HBM)
66(1)
4.2.2 HBM Pulse Waveform
67(1)
4.2.3 HBM Equivalent Circuit Model
67(1)
4.2.4 HBM Tester Source
67(2)
4.3 HBM Test System
69(1)
4.4 HBM Two-pin Test System
69(1)
4.5 Machine Model (MM)
69(1)
4.5.1 MM Equivalent Circuit
69(1)
4.5.2 MM Pulse Waveform
70(1)
4.5.3 ESD MM Tester Source
70(1)
4.6 Small Charge Model (SCM)
70(1)
4.7 Small Charge Model Source
71(1)
4.7.1 Charged Device Model
71(1)
4.8 CDM Pulse Waveform
72(5)
4.8.1 CDM Commercial Tester
72(1)
4.8.2 CDM Equivalent Circuit
72(2)
4.8.3 CDM Equivalent Circuit with Tester Chassis
74(1)
4.8.4 Human Metal Model (HMM)
74(1)
4.8.5 HMM Pulse Waveform
75(1)
4.8.6 HMM Pulse Waveform Equation
76(1)
4.9 HMM Equivalent Circuit
77(1)
4.10 HMM Test Equipment
77(1)
4.11 HMM Test Configuration
78(1)
4.11.1 HMM Horizontal Configuration
78(1)
4.11.2 HMM Vertical Configuration
78(1)
4.12 HMM Fixture Board
78(4)
4.13 Transmission Line Pulse (TLP)
82(2)
4.14 TLP Test Systems
84(3)
4.14.1 Very Fast Transmission Line Pulse (VF-TLP)
84(1)
4.14.2 VF-TLP Pulse Waveform
84(3)
4.15 IEC 61000-4-2
87(2)
4.15.1 IEC 61000-4-2 Air Discharge
88(1)
4.15.2 IEC 61000-4-2 Direct Contact Discharge
88(1)
4.15.3 IEC 61000-4-2 Pulse Waveform
88(1)
4.15.4 IEC 61000-4-2 Pulse Waveform Equation
89(1)
4.16 Equivalent Circuit
89(1)
4.17 Test Equipment
89(1)
4.18 Cable Discharge Event (CDE)
90(3)
4.18.1 CDE - Charging, Discharging, and Pulse Waveform
92(1)
4.18.2 Charging Process
92(1)
4.18.3 Discharging Process
92(1)
4.19 CDE Pulse Waveform
93(1)
4.20 Equivalent Circuit
93(1)
4.21 Commercial Test Systems
94(1)
4.22 Systems Electromagnetic Interference (EMI)
95(1)
4.23 Electromagnetic Compatibility (EMC)
95(1)
4.24 Electrical Overstress (EOS)
95(1)
4.25 Latchup
95(1)
4.26 Electrical Overstress (EOS)
95(1)
4.27 EOS Sources - Lightning
96(1)
4.28 EOS Sources - Electromagnetic Pulse (EMP)
97(1)
4.29 Electromagnetic Compatibility
97(3)
4.30 Summary and Closing Comments
100(1)
References
100(17)
5 BD Device Physics 117(72)
5.1 Electro-thermal Instability
117(1)
5.2 Stable System
118(1)
5.3 Unstable System
118(2)
5.4 Differential Relation of Voltage and Current
120(1)
5.5 Time Constant Hierarchy
121(1)
5.6 Thermal Physics Time Constants
121(1)
5.7 Adiabatic, Thermal Diffusion Time Scale and Steady State
121(1)
5.8 Electro-quasistatic and Magnetoquasistatics
122(2)
5.9 Electrical Instability
124(1)
5.9.1 Thermal Time Constant Approach
124(2)
5.9.1.1 Heat Capacity
124(1)
5.9.1.2 Thermal Diffusion
124(1)
5.9.1.3 Heat Transport Equation
124(1)
5.10 Thermal Physics Time Constants
125(1)
5.11 Adiabatic, Thermal Diffusion Time Scale and Steady State
126(1)
5.12 Electrical Instability and Breakdown
126(1)
5.12.1 Electrical Instability
126(1)
5.13 Spatial Instability and Electro-thermal Current Constriction
127(1)
5.14 Equipotential Surface
127(1)
5.15 Heat Flow
128(1)
5.16 Conservation of Heat
128(1)
5.17 Electric Potential and Temperature Gradient
128(1)
5.17.1 Maximum Temperature and Minimum Potential
128(1)
5.18 Electric Energy, Resistivity, and Thermal Conductivity
129(2)
5.18.1 Intrinsic Temperature
129(1)
5.18.2 Radius of Current Constriction
130(1)
5.18.3 Differential Potential and Differential Thermal Potential
130(1)
5.18.4 Resistance Reduction and Current Constriction
130(1)
5.18.5 Contact Radius and Contour Relationship
131(1)
5.18.6 Current Constriction Relationship
131(1)
5.18.7 Intrinsic Temperature
131(1)
5.19 Breakdown
131(5)
5.19.1 Paschen's Breakdown Theory
131(1)
5.19.2 Townsend's Concept
132(1)
5.19.3 Toepler's Law
132(1)
5.19.4 Avalanche Breakdown
133(2)
5.19.4.1 Energy Transfer from Electric Field to Carriers
133(1)
5.19.4.2 Energy Balance Relationship
133(1)
5.19.4.3 Impact Ionization Coefficient
133(1)
5.19.4.4 Impact Ionization Mean Free Path and Optical Generation Mean Free Path
134(1)
5.19.4.5 Impact Ionization Coefficient
134(1)
5.19.5 Breakdown in Air
135(1)
5.20 Electron Current Continuity Relationship
136(2)
5.20.1 Time-dependent Electron Population
136(1)
5.20.2 Electron Density
137(1)
5.21 Air Breakdown and Peak Currents
138(1)
5.22 Electro-thermal Instability
139(2)
5.23 Mathematical Methods - Green's Function and Method of Images
141(2)
5.23.1 Case of a Parallelepiped in an Infinite Medium
142(1)
5.24 Mathematical Methods - Green's Function and Method of Images
143(5)
5.24.1 Case of a Parallelepiped in an Infinite Medium
144(1)
5.24.2 Case of the Semi-infinite Domain
145(3)
5.25 Mathematical Methods - Integral Transforms of the Heat Conduction Equation
148(4)
5.26 Flux Potential Transfer Relations Matrix Methodology
152(2)
5.27 Heat Equation Variable Conductivity
154(2)
5.28 Mathematical Methods - Boltzmann Transformation
156(2)
5.29 Mathematical Methods - The Duhamel Formulation
158(2)
5.30 Spherical Source Tasca Model
160(3)
5.31 Wunsch-Bell Model
163(3)
5.32 The Smith and Littau Model
166(2)
5.33 The Arkihpov-Astvatsaturyan-Godovosyn-Rudenko Model
168(1)
5.34 The Vlasov-Sinkevitch Model
169(1)
5.35 The Dwyer, Franklin and Campbell Model
169(5)
5.36 Negative Differential Resistor and Resistor Ballasting
174(2)
5.37 Ash Model - Nonlinear Failure Power Thresholds
176(2)
5.38 Statistical Models for ESD Prediction
178(2)
5.39 Summary and Closing Comments
180(1)
References
180(9)
6 ESD Events and Protection Circuits 189(46)
6.1 Human Body Model (HBM)
189(2)
6.1.1 HBM Pulse Waveform
189(1)
6.1.2 HBM Equivalent Circuit Model
189(1)
6.1.3 HBM Tester Source
189(1)
6.1.4 HBM Failure
190(1)
6.2 Machine Model (MM)
191(2)
6.2.1 MM Equivalent Circuit
191(1)
6.2.2 MM Pulse Waveform
192(1)
6.2.3 ESD MM Tester Source
192(1)
6.2.4 Machine Model Example of MM Failure
193(1)
6.3 Charged Device Model
193(4)
6.3.1 CDM Pulse Waveform
193(1)
6.3.2 CDM Commercial Tester
193(3)
6.3.3 CDM Equivalent Circuit
196(1)
6.3.4 CDM Equivalent Circuit with Tester Chassis
196(1)
6.3.5 CDM Failure Mechanism
196(1)
6.4 Human Metal Model (HMM)
197(7)
6.4.1 HMM Pulse Waveform
198(1)
6.4.2 HMM Pulse Waveform Equation
198(2)
6.4.3 Equivalent Circuit
200(1)
6.4.4 HMM Test Equipment
200(1)
6.4.5 HMM Test Configuration
201(1)
6.4.5.1 Horizontal Configuration
201(1)
6.4.5.2 Vertical Configuration
202(1)
6.4.6 HMM Fixture Board
202(2)
6.5 IEC 61000-4-2 History
204(5)
6.5.1 IEC 61000-4-2 Scope
204(1)
6.5.2 IEC 61000-4-2 Purpose
204(3)
6.5.2.1 Air Discharge
205(1)
6.5.2.2 Direct Contact Discharge
205(1)
6.5.2.3 Pulse Waveform
205(1)
6.5.2.4 Pulse Waveform Equation
206(1)
6.5.3 Equivalent Circuit
207(1)
6.5.4 Test Equipment
207(1)
6.5.5 Test Configuration
208(1)
6.5.6 IEC 61000-4-2 ESD Protection Circuitry
208(1)
6.5.7 ESD Guns
209(1)
6.6 IEC 61000-4-5
209(4)
6.6.1 History
209(1)
6.6.2 IEC 61000-4-5 Scope
210(1)
6.6.3 IEC 61000-4-5 Purpose
210(1)
6.6.4 IEC 61000-4-5 Pulse Waveform
210(1)
6.6.5 IEC 61000-4-5 Test Equipment
211(1)
6.6.6 IEC 61000-4-5 Test Sequence and Procedure
212(1)
6.6.7 Failure Mechanisms
213(1)
6.6.8 IEC 61000-4-5 ESD Current Paths
213(1)
6.6.9 ESD Protection Circuit Solutions
213(1)
6.7 Cable Discharge Event (CDE)
213(2)
6.7.1 Cable Discharge Event History
213(2)
6.8 CDM Scope
215(4)
6.8.1 CDM Purpose
215(1)
6.8.2 Cable Discharge Event - Charging, Discharging, and Pulse Waveform
216(1)
6.8.3 CDE Charging Process
216(1)
6.8.4 CDE Discharging Process
217(1)
6.8.5 CDE Pulse Waveform
217(1)
6.8.6 CDE Equivalent Circuit
217(1)
6.8.7 CDE Test Equipment
218(24)
6.8.7.1 Commercial Test Systems
218(1)
References
219(16)
7 ESD Failure Mechanism 235(46)
7.1 Tables of CMOS ESD Failure Mechanisms
235(1)
7.2 LOCOS Isolation-Defined CMOS
235(6)
7.3 LOCOS-bound Thick Oxide MOSFET
241(1)
7.4 LOCOS-Bound Structures
242(3)
7.4.1 LOCOS-bound P+/N-well Junction Diode
242(2)
7.4.2 LOCOS-bound N+/P- Substrate Junction Diode
244(1)
7.4.3 LOCOS-bound N-Well/P- Substrate Junction Diode
244(1)
7.4.4 LOCOS-bound Lateral N-well to N-well
244(1)
7.4.5 LOCOS-bound lateral N+ to N-well
245(1)
7.5 Shallow Trench Isolation (STI)
245(1)
7.6 STI Pull-down ESD Failure Mechanism
245(1)
7.7 STI Pull-Down and Gate Wrap-Around
246(1)
7.7.1 Silicide and Diodes
247(1)
7.7.2 Non-silicided Diode Structures
247(1)
7.8 MOSFETs
247(5)
7.8.1 N-channel MOSFET
247(3)
7.8.2 N-channel Multi-finger MOSFET
250(2)
7.9 LOCOS-bound Thick Oxide MOSFET
252(2)
7.9.1 Cascode Series N-channel MOSFET
252(1)
7.9.2 P-channel MOSFET
252(1)
7.9.3 P-channel Multi-finger MOSFET
253(1)
7.9.4 Tungsten Silicide Gate MOSFET
253(1)
7.9.5 Polysilicon Silicide Gate MOSFET
254(1)
7.9.6 Metal Gate/High K Dielectric MOSFET
254(1)
7.10 Bipolar Transistor Devices
254(5)
7.10.1 LOCOS-bound Lateral PNP Bipolar
254(1)
7.10.2 Polysilicon-defined Devices
254(1)
7.10.3 Polysilicon-bound Gated Diode
255(1)
7.10.4 Lateral Diode with Block Mask
255(1)
7.10.5 Resistors
256(1)
7.10.6 Diffused Resistors
256(1)
7.10.7 N-well Resistors
256(2)
7.10.8 Buried Resistors
258(1)
7.11 Silicide Blocked N-diffusion Resistors
259(1)
7.12 Silicon Germanium ESD Failure Mechanisms
259(1)
7.13 Silicon Germanium Carbon ESD Failure Mechanisms
259(1)
7.14 Gallium Arsenide Technology ESD Failure Mechanisms
260(1)
7.15 Indium Gallium Arsenide ESD Failure Mechanisms
261(2)
7.15.1 Magnetic Recording
261(1)
7.15.2 FinFET Transistors
262(1)
7.16 Micro Electromechanical (MEM) Systems
263(2)
7.17 Micro-mirror Array Failures
265(4)
7.17.1 Manufacturing Failure
265(1)
7.17.2 EOS Failure Mechanisms
265(2)
7.17.3 EOS Failure Mechanisms - Semiconductor Process - Application Mismatch
267(1)
7.17.4 EOS Failure Mechanisms - Bond Wire Failures
267(1)
7.17.5 EOS Failure Mechanisms - External Load to Chip Failures
268(1)
7.17.6 EOS Failure Mechanisms - Printed Circuit Board (PCB) to Chip Failures
268(1)
7.17.7 EOS Failure Mechanisms - Reverse Insertion
268(1)
7.18 EOS Bond Pad and Interconnect Failure
269(3)
7.18.1 EOS Failure - Packaging Failure
269(1)
7.18.1.1 Electrical Overstress - Packaging Ablation
269(3)
7.19 Summary and Closing Comments
272(1)
References
273(8)
8 ESD Design Synthesis 281(82)
8.1 ESD Design Synthesis and Architecture Flow
281(6)
8.1.1 Fundamental Concepts of ESD Design
281(4)
8.1.2 Top-down ESD Design
285(1)
8.1.3 Bottom-up ESD Design
285(1)
8.1.4 Top-down ESD Design - Memory Semiconductor Chips
285(1)
8.1.5 Top-down ESD Design - ASIC Design System
286(1)
8.2 ESD Design - the Signal Path and the Alternate Current Path
287(2)
8.3 ESD Electrical Circuit and Schematic Architecture Concepts
289(1)
8.4 The Ideal ESD Network
289(4)
8.4.1 Ideal ESD Networks and the Current-Voltage D.C. Design Window
289(1)
8.4.2 The ESD Design Window
290(1)
8.4.3 The Ideal ESD Networks in the Frequency Domain Design Window
291(2)
8.5 Mapping Semiconductor Chips and ESD Designs
293(1)
8.6 Mapping across Semiconductor Fabricators
294(1)
8.7 ESD Design Mapping across Technology Generations
295(11)
8.7.1 Mapping from Bipolar Technology to CMOS Technology
296(1)
8.7.2 Mapping from Digital CMOS Technology to Mixed Signal Analog-Digital CMOS Technology
297(1)
8.7.3 Mapping from Bulk CMOS Technology to Silicon On Insulator (SOI)
297(1)
8.7.4 ESD Design - Mapping CMOS to RF CMOS Technology
298(8)
8.7.4.1 ESD Chip Architecture, and ESD Test Standards
299(1)
8.7.4.2 ESD Chip Architecture, and ESD Testing
299(1)
8.7.4.3 ESD Chip Architecture, and ESD Alternative Current Paths
300(1)
8.7.4.4 ESD Circuits, I/O, and Cores
300(1)
8.7.4.5 ESD Signal Pin Circuits
300(2)
8.7.4.6 ESD Power Clamp Networks
302(1)
8.7.4.7 ESD Rail-to-Rail Circuits
303(1)
8.7.4.8 ESD Design and Noise
304(1)
8.7.4.9 ESD Internal Signal Path ESD Networks
305(1)
8.7.5 Cross Domain ESD Networks
306(1)
8.8 ESD Networks, Sequencing, and Chip Architecture
306(8)
8.8.1 ESD Design Synthesis - Latchup-free ESD Networks
307(7)
8.8.1.1 ESD Design Concepts - Buffering - Inter-device
309(1)
8.8.1.2 ESD Design Concepts - Ballasting - Inter-Device
309(2)
8.8.1.3 ESD Design Concepts - Ballasting - Intra-device
311(1)
8.8.1.4 ESD Design Concepts - Distributed Load Techniques
311(1)
8.8.1.5 ESD Design Concepts - Dummy Circuits
312(1)
8.8.1.6 ESD Design Concepts - Power Supply Decoupling
313(1)
8.8.1.7 ESD Design Concepts - Feedback Loop Decoupling
313(1)
8.9 ESD Layout and Floorplan-related Concepts
314(9)
8.9.1 Design Symmetry
314(1)
8.9.2 Design Segmentation
315(8)
8.9.2.1 ESD Design Concepts - Utilization of Empty Space
317(1)
8.9.2.2 ESD Design Synthesis - Across Chip Line Width Variation (ACLU)
317(1)
8.9.2.3 ESD Design Concepts - Dummy Shapes
318(1)
8.9.2.4 ESD Design Concepts - Dummy Masks
319(1)
8.9.2.5 ESD Design Concepts - Adjacency
320(1)
8.9.2.6 ESD Design Concepts - Analog Circuit Techniques
321(1)
8.9.2.7 ESD Design Concepts - Wire Bonds
322(1)
8.9.2.8 ESD Design Rules
322(1)
8.9.2.9 ESD Design Rule Check (DRC)
322(1)
8.9.2.10 ESD Layout Versus Schematic (LVS)
322(1)
8.9.3 Electrical Resistance Checking (ERC)
323(1)
8.10 ESD Architecture and Floor-planning
323(24)
8.10.1 ESD Design Floorplan
323(1)
8.10.2 Peripheral I/O Design
324(3)
8.10.2.1 Pad Limited Peripheral I/O Design Architecture
324(2)
8.10.2.2 Pad Limited Peripheral I/O Design Architecture - Staggered I/O
326(1)
8.10.3 Core Limited Peripheral I/O Design Architecture
327(1)
8.10.4 Lumped ESD Power Clamp in Peripheral I/O Design Architecture
328(1)
8.10.5 Lumped ESD Power Clamps in Peripheral I/O Design Architecture in the Semiconductor Chip Corners
328(1)
8.10.6 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Power Pads
328(1)
8.10.7 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Master/Slave ESD Power Clamp System
329(4)
8.10.7.1 Array I/O
330(1)
8.10.7.2 Array I/O - Off Chip Driver (OCD) Banks
331(1)
8.10.7.3 Array I/O Nibble Architecture
332(1)
8.10.8 Array I/O Pair Architecture
333(1)
8.10.9 Array I/O - Fully Distributed
334(4)
8.10.10 ESD Architecture - Dummy Bus Architectures
338(1)
8.10.11 ESD Architecture - Dummy VDD Bus
338(1)
8.10.12 ESD Architecture - Dummy Ground (Vss) Bus
339(50)
8.10.12.1 Native Voltage Power Supply Architecture
340(1)
8.10.12.2 Single Power Supply Architecture
340(1)
8.10.12.3 Mixed Voltage Architecture
340(5)
8.10.12.4 Mixed Signal Architecture
345(1)
8.10.12.5 Mixed-system Architecture - Digital and Analog CMOS
345(2)
8.11 Digital and Analog CMOS Architecture
347(1)
8.12 Digital and Analog Floorplan - Placement of Analog Circuits
348(2)
8.13 Mixed-signal Architecture - Digital, Analog, and RF Architecture
350(1)
8.14 Summary and Closing Comments
351(1)
Questions
351(1)
References
352(11)
9 On-chip ESD Protection Circuits - Input Circuitry 363(78)
9.1 Receivers and ESD
363(1)
9.2 Receivers and Receiver Delay Time
363(1)
9.3 ESD Loading Effect on Receiver Performance
364(1)
9.4 Receivers and HBM
365(1)
9.5 Receivers and CDM
366(2)
9.6 Receivers and Receiver Evolution
368(1)
9.7 Receiver Circuits with Half-pass Transmission Gate
368(3)
9.8 Receiver with Full-pass Transmission Gate
371(2)
9.9 Receiver, Half-pass Transmission Gate, and Keeper Network
373(4)
9.10 Receiver, Half-pass Transmission Gate, and the Modified Keeper Network
377(2)
9.11 Receiver Circuits with Pseudo-zero VT Half-pass Transmission Gates
379(2)
9.12 Receiver with Zero VT Transmission Gate
381(2)
9.13 Receiver Circuits with Bleed Transistors
383(1)
9.14 Receiver Circuits with Test Functions
384(1)
9.15 Receiver with Schmitt Trigger Feedback Network
385(4)
9.16 Bipolar Transistor Receivers
389(8)
9.16.1 Bipolar Single-ended Receiver Circuits
389(1)
9.16.2 Differential Receivers
390(1)
9.16.3 Signal Differential Receiver
391(1)
9.16.4 Signal CMOS Differential Receivers
391(1)
9.16.5 Signal Bipolar Differential Receivers
391(6)
9.17 CMOS Differential Receiver with Analog Layout Concepts
397(1)
9.18 CMOS Differential Receiver Capacitance Loading
398(1)
9.19 CMOS Differential Receiver ESD Mismatch
398(2)
9.20 Analog Differential Pair ESD Signal Pin Matching with Common Well Layout
400(3)
9.21 Analog Differential Pair Common Centroid Design Layout - Signal-Pin to Signal-Pin and Parasitic ESD Elements
403(2)
9.22 Off-chip Drivers (OCD)
405(2)
9.23 Off-chip Driver I/O Standards and ESD
407(1)
9.24 Off-chip Driver (OCD) ESD Design Basics
408(6)
9.24.1 OCD: CMOS Asymmetric Pull-up/Pull-down
408(2)
9.24.2 OCD: CMOS Symmetric Pull-up/Pull-down
410(1)
9.24.3 OCD: Gunning Transceiver Logic (GTL)
411(1)
9.24.4 OCD: High-speed Transceiver Logic (HSTL)
412(1)
9.24.5 OCD: Stub Series Terminated Logic (SSTL)
413(1)
9.25 Off-chip Drivers (OCD): Mixed Voltage Interface
414(1)
9.26 Off-chip Drivers (OCD): Self-bias Well OCD Networks
414(1)
9.27 Self-bias Well Off-chip Driver (OCD) Networks
415(2)
9.28 ESD Protection Networks for Self-bias Well OCD Networks
417(1)
9.29 Programmable Impedance Off-chip Driver (OCD) Network
418(4)
9.30 ESD Input Protection Networks for Programmable Impedance Off-chip Drivers
422(1)
9.31 Universal Off-chip Drivers
423(1)
9.32 Gate Array Off-chip Driver Design
423(2)
9.32.1 Gate Array Off-chip Driver ESD Design Practices
423(1)
9.32.2 Gate Array OCD Design - Usage of Unused Elements
423(2)
9.33 Gate Array OCD Design - Impedance Matching of Unused Elements
425(1)
9.34 OCD ESD Design - Power Rails Over Multi-finger MOSFETs
426(1)
9.35 Off-chip Driver: Gate-modulated MOSFET ESD Network
427(1)
9.36 Off-chip Driver Simplified Gate Modulated Network
428(1)
9.37 Off-chip Drivers ESD Design: Integration of Coupling and Ballasting Techniques
428(1)
9.38 Ballasting and Coupling
429(1)
9.39 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with Diode
429(1)
9.40 MOSFET Source-initiated Gate-bootstrapped Resistor Ballasted Multi-finger MOSFET with a MOSFET
430(1)
9.41 Gate-coupled Domino Resistor-ballasted MOSFET
431(2)
9.42 Substrate-modulated Resistor Ballasted MOSFET
433(1)
9.43 Summary and Closing Comments
434(1)
Problems
435(2)
References
437(4)
10 On-Chip ESD Protection Circuits - ESD Power Clamps 441(50)
10.1 ESD Power Clamps
441(1)
10.2 ESD Power Clamp Design Practices
441(1)
10.3 Current Loops
442(1)
10.4 Impedance
442(1)
10.5 Segmentation
443(1)
10.6 Voltage Limitations
443(1)
10.7 Latchup
443(1)
10.8 ESD Power Clamp Circuits
444(1)
10.9 Classification of ESD Power Clamps
444(1)
10.10 Master-Slave ESD Power Clamps
445(1)
10.11 Trigger Networks
445(1)
10.12 ESD Power Clamp Characteristics and Issues
445(1)
10.13 Design Synthesis of ESD Power Clamp - Key Design Parameters
446(1)
10.14 Design Synthesis of ESD Power Clamps Trigger Networks
446(1)
10.15 Transient Response Frequency Trigger Element and the ESD Frequency Window
446(1)
10.16 ESD Power Clamp Frequency Design Window
447(1)
10.17 Design Synthesis of ESD Power Clamp - Voltage Triggered ESD Trigger Elements
448(1)
10.18 Design Synthesis of ESD Power Clamp - The ESD Power Clamp Shunting Element
449(1)
10.19 ESD Power Clamp Trigger Condition vs. Shunt Failure
450(1)
10.20 ESD Clamp Element - Width Scaling
450(1)
10.21 ESD Clamp Element - On-resistance
450(1)
10.22 ESD Clamp Element - Safe Operating Area (SOA)
451(1)
10.23 ESD Power Clamp Issues
451(1)
10.24 ESD Power Clamp Issues - Power-up and Power-down
451(1)
10.25 ESD Power Clamp Issues - False Triggering
452(1)
10.26 ESD Power Clamp Issues - Pre-charging
452(1)
10.27 ESD Power Clamp Issues - Post-charging
452(1)
10.28 ESD Power Clamp Design
453(3)
10.28.1 Native Power Supply RC-Triggered MOSFET ESD Power Clamp
453(1)
10.28.2 Non-Native Power Supply RC-triggered MOSFET ESD Power Clamp
453(1)
10.28.3 ESD Power Clamp Networks with Improved Inverter Stage Feedback
454(1)
10.28.4 CMOS RC-trigger Clamp with CMOS PFET Half-latch Keeper Feedback
454(1)
10.28.5 CMOS RC-trigger Clamp with CMOS PFET Full-latch Keeper Feedback
454(2)
10.29 ESD Power Clamp Design Synthesis - Forward Bias Triggered ESD Power Clamps
456(3)
10.29.1 ESD Power Clamp Design Synthesis - IEC 61000-4-2 Responsive ESD Power Clamps
456(1)
10.29.2 ESD Power Clamp Design Synthesis - Pre-charging and Post-charging Insensitive ESD Power Clamps
457(1)
10.29.3 Master/Slave ESD Power Clamp Systems
457(2)
10.30 Series Stacked RC-triggered ESD Power Clamps
459(4)
10.30.1 ESD Power Clamps - Triple Well Series Diodes as Core Clamps
459(4)
10.31 Triple Well Diode String ESD Power Clamp
463(1)
10.31.1 Triple Well ESD Power Clamp Network with Independent N-Band Voltage Bias
463(1)
10.32 Bipolar ESD Power Clamps
464(5)
10.32.1 Bipolar Voltage-Triggered ESD Power Clamps
464(1)
10.32.2 Bipolar ESD Power Clamp - Zener Breakdown Voltage-Triggered
465(1)
10.32.3 Bipolar ESD Power Clamp - BVCEO Voltage Triggered ESD Power Clamp
466(1)
10.32.4 The Johnson Limit Relationship
466(3)
10.33 ESD Power Clamp Design Synthesis - Bipolar ESD Power Clamps
469(11)
10.33.1 Mixed Voltage Interface Forward-bias Voltage and BVCEO-Breakdown Synthesized Bipolar ESD Power Clamps
471(5)
10.33.2 Ultra-low-voltage Forward-biased Voltage-trigger BiCMOS ESD Power Clamp
476(4)
10.34 Bipolar ESD Power Clamps with Frequency Trigger Elements: Capacitance-triggered
480(1)
10.35 Silicon Controlled Rectifier Power Clamps
481(2)
10.35.1 ESD Silicon Controlled Rectifier (SCR) Circuits
481(1)
10.35.2 Uni-Directional Silicon Controlled Rectifier (SCR)
481(1)
10.35.3 Bi-directional Silicon Controlled Rectifier (SCR) ESD Power Clamps
482(1)
10.35.4 Medium Level SCR (MLSCR) ESD Power Clamps
482(1)
10.35.5 Low Voltage Triggered SCR (LVTSCR) ESD Power Clamps
483(1)
Problems
483(3)
References
486(5)
11 ESD Architecture and Floor Planning 491(60)
11.1 ESD Design Floor Plan
491(1)
11.2 Peripheral I/O Design
492(1)
11.3 Pad Limited Peripheral I/O Design Architecture
493(1)
11.4 Pad Limited Peripheral I/O Design Architecture - Staggered I/O
493(2)
11.5 Core Limited Peripheral I/O Design Architecture
495(1)
11.6 Lumped ESD Power Clamp in Peripheral I/O Design Architecture
496(1)
11.7 Lumped ESD Power Clamp in Peripheral I/O Design Architecture in the Semiconductor Chip Corners
496(1)
11.8 Lumped ESD Power Clamp in Peripheral I/O Design Architecture - Power Pads
497(1)
11.9 Lumped ESD Power Clamp in Peripheral I/O Design Architecture -Master/Slave ESD Power Clamp System
498(1)
11.10 Array I/O
498(3)
11.10.1 Array I/O - Off Chip Driver (OCD) Banks
499(2)
11.11 Array I/O Nibble Architecture
501(2)
11.12 Array I/O Pair Architecture
503(1)
11.13 Array I/O - Fully Distributed
504(3)
11.14 ESD Architecture - Dummy Bus Architecture
507(1)
11.15 ESD Architecture - Dummy VDD Bus
507(1)
11.16 ESD Architecture - Dummy Ground (VSS) Bus
508(1)
11.17 Native Voltage Power Supply Architecture
508(1)
11.18 Single Power Supply Architecture
509(1)
11.19 Mixed Voltage Architecture
509(1)
11.20 Mixed Voltage Architecture - Single Power Supply
509(2)
11.21 Mixed Voltage Architecture - Dual Power Supply
511(3)
11.22 Mixed Signal Architecture
514(1)
11.22.1 Mixed Signal Architecture - CMOS
514(1)
11.22.2 Mixed System Architecture - Digital and Analog CMOS
514(1)
11.22.3 Digital and Analog CMOS Architecture
514(1)
11.23 Digital and Analog Floor Plan - Placement of Analog Circuits
515(3)
11.24 Mixed Signal Architecture - Digital, Analog, and RF Architecture
518(1)
11.25 ESD Power Grid Design
519(6)
11.25.1 ESD Power Grid
519(1)
11.25.2 ESD Power Grid - Key ESD Design Parameters
519(1)
11.25.3 Power Grid Layout Design
519(1)
11.25.4 Power Grid Design - Slotting of Power Grid
519(1)
11.25.5 Power Grid Design - Segmentation of Power Grids
520(1)
11.25.6 Power Grid Design - Chip Corners
521(1)
11.25.7 Power Grid Design - Stacking of Metal Levels
522(1)
11.25.8 Power Grid Design - Wiring Bays and Weaved Power Bus Designs
523(1)
11.25.9 ESD Specification Power Grid Considerations
523(1)
11.25.10 CDM Specification Power Grid and Interconnect Design Considerations
523(1)
11.25.11 HMM and IEC Specification Power Grid and Interconnect Design Considerations
524(1)
11.25.12 Semiconductor Chip Guard Ring Seal
524(1)
11.26 I/O to Core Guard Rings
525(2)
11.26.1 I/O to I/O Guard Rings
526(1)
11.27 Within I/O Guard Rings
527(1)
11.27.1 Within I/O Cell Guard Ring
527(1)
11.28 ESD-to-I/O Off-Chip Driver (OCD) Guard Ring
527(12)
11.28.1 ESD Signal Pin Guard Rings
528(1)
11.28.2 ESD Signal Pin Guard Rings and Dual-diode ESD Network
529(2)
11.28.3 Mixed Signal Guard Rings - Digital to Analog
531(1)
11.28.4 Mixed Voltage Guard Rings - High Voltage to Low Voltage
531(1)
11.28.5 High Voltage Guard Rings
532(1)
11.28.6 Passive and Active Guard Rings
533(1)
11.28.7 Passive Guard Rings
534(1)
11.28.8 Active Guard Rings
534(1)
11.28.9 Trench Guard Rings
535(1)
11.28.10 Through Silicon Via (TSV) Guard Rings
536(1)
11.28.11 Guard Ring Design Rule Checking (DRC)
537(1)
11.28.12 Internal Latchup and Guard Ring Design Rules
537(1)
11.28.13 External Latchup Guard Ring Design Rules
538(1)
11.29 Guard Rings and Computer Aided Design (CAD) Methods
539(2)
11.29.1 Built-in Guard Rings
539(1)
11.29.2 Guard Ring Parameterized Cells (Pcell)
539(1)
11.29.3 Post-processing Methodology of Guard Ring Modification
540(1)
11.30 Summary and Closing Comments
541(1)
References
541(10)
12 ESD Digital Design 551(32)
12.1 Fundamental Concepts of ESD Design
551(1)
12.2 Concepts of ESD Digital Design
551(1)
12.3 Device Response to External Events
552(1)
12.4 Alternative Current Loops
553(1)
12.4.1 Switches
553(1)
12.4.2 Decoupling of Current Paths
553(1)
12.5 Decoupling of Feedback Loops
554(1)
12.6 Decoupling of Power Rails
554(1)
12.7 Local and Global Distribution
554(1)
12.8 Usage of Parasitic Elements
555(1)
12.8.1 Buffering
555(1)
12.8.2 Ballasting
555(1)
12.9 Unused Section of a Semiconductor Device, Circuit, or Chip Function
556(1)
12.10 Unused Corners
556(1)
12.11 Unused White Space
556(1)
12.12 Impedance Matching Between Floating and Non-floating Networks
556(1)
12.13 Unconnected Structures
557(1)
12.13.1 Utilization of Dummy Structures and Dummy Circuits
557(1)
12.13.2 Non-scalable Source Events
557(1)
12.13.3 Area Efficiency
557(1)
12.14 Symmetry
557(1)
12.15 Design Synthesis
557(2)
12.15.1 Synthesis and Architecture of a Semiconductor Chip for ESD Protection
557(1)
12.15.2 Electrical and Spatial Connectivity
558(1)
12.15.3 Electrical Connectivity
558(1)
12.15.4 Thermal Connectivity
559(1)
12.15.5 Spatial Connectivity
559(1)
12.16 ESD, Latchup, and Noise
559(15)
12.16.1 Noise
560(1)
12.16.2 Latchup
561(1)
12.16.3 Interface Circuits and ESD Elements
561(3)
12.16.4 ESD Power Clamp Networks
564(2)
12.16.5 Placement of ESD Power Clamps
566(2)
12.16.6 ESD Rail-to-Rail Networks
568(2)
12.16.7 Placement of ESD Rail-to-Rail Networks
570(1)
12.16.8 Peripheral and Array I/O
570(2)
12.16.9 Guard Rings
572(1)
12.16.10 Pads, Floating Pads, and No Connect Pads
573(1)
12.17 Structures Under Bond Pads
574(1)
12.18 Summary and Closing Comments
575(1)
References
576(7)
13 ESD Analog Design 583(46)
13.1 Analog Design: Local Matching
583(1)
13.2 Analog Design: Global Matching
583(1)
13.3 Symmetry
584(1)
13.3.1 Layout Design Symmetry
584(1)
13.4 Analog Design - Local Matching
584(1)
13.5 Analog Design - Global Matching
584(2)
13.5.1 Design Orientation
585(1)
13.5.2 Symmetry and Matching
585(1)
13.5.3 Layout Design Symmetry
585(1)
13.5.4 Thermal Symmetry
585(1)
13.6 Common Centroid Design
586(1)
13.7 Common Centroid Arrays
586(1)
13.7.1 One-axis Common Centroid Design
586(1)
13.7.2 Two-axis Common Centroid Design
586(1)
13.8 Interdigitation Design
586(1)
13.9 Common Centroid and Interdigitation Design
587(6)
13.9.1 Linewidth Control
588(2)
13.9.2 Analog Design - Across Chip Line Width Variation (ACLU)
590(1)
13.9.3 Passive Element Design
591(1)
13.9.4 Resistor Element Design
591(1)
13.9.5 Resistor Element Design: Dogbone Layout
591(1)
13.9.6 Resistor Design - Analog Interdigitated Layout
592(1)
13.10 Dummy Resistor Layout
593(1)
13.11 Thermoelectric Cancelation Layout
593(1)
13.12 Electrostatic Shield
593(1)
13.13 Interdigitated Resistors and ESD Parasitics
594(1)
13.14 Capacitor Element Design
595(1)
13.15 Inductor Element Design
596(1)
13.15.1 Quality Factor
597(1)
13.16 ESD Failure in Inductors
597(1)
13.17 Inductor Physical Variables
598(1)
13.18 Inductor Element Design
599(1)
13.19 Diode Design
599(3)
13.19.1 Circular Diode Designs
600(1)
13.19.2 Octagonal Diode Design
600(1)
13.19.3 MOSFET Design
601(1)
13.19.4 Multi-finger MOSFET with Dummy Fingers
601(1)
13.20 Analog ESD Circuits
602(5)
13.20.1 Analog ESD Devices and Circuits
602(1)
13.20.2 Analog ESD Diodes
602(1)
13.20.3 Analog Dual Diode and Series Diodes
602(1)
13.20.4 Analog ESD: Dual Diode - Resistor
602(3)
13.20.5 Dual Diode - Resistor - Dual Diode
605(1)
13.20.6 Dual-diode Resistor - Grounded Gate MOSFET
606(1)
13.20.6.1 Back-to-Back Diode Strings
606(1)
13.21 ESD MOSFETs
607(2)
13.21.1 Grounded Gate MOSFET
608(1)
13.21.2 ESD Power Clamps - RC Triggered MOSFET
609(1)
13.22 Receivers
609(5)
13.22.1 Signal Bipolar Differential Receivers
610(4)
13.23 CMOS Differential Receiver with Analog Layout Concepts
614(6)
13.23.1 CMOS Differential Receiver Capacitance Loading
616(1)
13.23.2 CMOS Differential Receiver ESD Mismatch
616(1)
13.23.3 Analog Differential Pair ESD Signal Pin Matching with Common Well Layout
617(3)
13.24 Analog Differential Pair Common Centroid Design Layout - Signal-pin to Signal-pin and Parasitic ESD Elements
620(4)
13.25 Summary and Closing Comments
624(1)
References
624(5)
14 ESD RF Design 629(52)
14.1 Fundamental Concepts of ESD Design
629(3)
14.2 Fundamental Concepts of RF ESD Design
632(5)
14.3 RF CMOS Input Circuits
637(10)
14.3.1 RF CMOS ESD Diode Networks
637(4)
14.3.2 RF CMOS Diode String ESD Network
641(2)
14.3.3 RF CMOS - Diode-inductor ESD Networks
643(2)
14.3.4 RF Inductor-diode ESD Networks
645(1)
14.3.5 RF Diode-inductor ESD Networks
646(1)
14.4 RF CMOS Impedance Isolation LC Resonator ESD Networks
647(1)
14.4.1 RF CMOS LC-diode ESD Networks
647(1)
14.4.2 RF CMOS Diode-LC ESD Networks
648(1)
14.5 RF CMOS LC-diode Networks Experimental Results
648(2)
14.6 RF CMOS LNA ESD Design - Low Resistance ESD Inductor and ESD Diode Clamping Elements in H-configuration
650(3)
14.7 RF CMOS T-coil Inductor ESD Input Network
653(2)
14.8 RF CMOS Distributed ESD Networks
655(1)
14.9 RF CMOS Distributed ESD-RF Networks
656(1)
14.10 RF CMOS Distributed RF-ESD Networks Using Series Inductors and Dual-diode Shunts
656(3)
14.11 RF CMOS Distributed RF-ESD Networks Using Series Inductors and MOSFET Parallel Shunts
659(2)
14.12 RF CMOS Distributed ESD Networks - Transmission Lines and Co-planar Waveguides
661(2)
14.13 RF CMOS - ESD and RF LDMOS Power Technology
663(3)
14.14 Summary and Closing Comments
666(1)
References
666(15)
15 ESD Power Electronics Design 681(28)
15.1 Reliability Technology Scaling and the Reliability Bathtub Curve
681(5)
15.1.1 Reliability Design Box
681(1)
15.1.2 Application Voltage and Voltage Metrics - Trigger Voltage, and Absolute Maximum Voltage
682(1)
15.1.3 Safe Operating Area (SOA)
683(1)
15.1.4 Electrical Safe Operating Area (E-SOA)
683(1)
15.1.5 Thermal Safe Operating Area (T-SOA)
684(1)
15.1.6 Transient Safe Operating Area
685(1)
15.2 Input Circuitry
686(16)
15.2.1 ESD Input Circuits
686(1)
15.2.2 Analog Input Circuit Protection
686(1)
15.2.3 High-voltage Analog Input Circuit Protection
686(1)
15.2.4 Analog Input High-voltage Grounded Gate NMOS (GGNMOS)
686(1)
15.2.5 Two-stage High-voltage Analog Input Circuit Protection
687(1)
15.2.6 Analog ESD Output Circuits
687(1)
15.2.7 Analog ESD Output Networks and Distinctions
688(1)
15.2.8 Analog Open Drain ESD Output Networks
689(1)
15.2.9 Analog ESD Ground-to-Ground Networks
689(1)
15.2.10 Back-to-Back CMOS Diode String
690(1)
15.2.11 HV GGNMOS Diode-configured Ground-to-Ground Network
690(1)
15.2.12 ESD Silicon-controlled Rectifier Circuits
690(1)
15.2.13 Unidirectional Silicon-controlled Rectifier (SCR)
690(1)
15.2.14 Bi-directional Silicon-controlled Rectifier (SCR)
691(1)
15.2.15 Medium-level Silicon-controlled Rectifier (MLSCR)
691(1)
15.2.16 Low-voltage Triggered SCR (LVTSCR)
692(1)
15.2.17 Analog and Power Technology with ESD Circuit Integration
693(1)
15.2.18 Analog ESD - Isolated and Non-isolated Designs
693(1)
15.2.19 Integrated Body Ties
693(1)
15.2.20 Self-PROTECTING vs Non-self Protecting Designs
693(1)
15.2.21 Lateral Diffused MOS (LDMOS) Circuits
693(1)
15.2.22 LOCOS-defined LDMOS
694(1)
15.2.23 RESURF Transistor
694(1)
15.2.24 Advantages and Disadvantages of LOCOS-defined LDMOS Transistors
694(1)
15.2.25 Shallow Trench Isolation (STI)-defined LDMOS
695(1)
15.2.26 Shallow Trench Isolation (STI)-defined Isolated LDMOS
695(1)
15.2.27 LDMOS Layout - Circular Design
696(1)
15.2.28 LDMOS Transmission Line Pulse (TLP) I-V Characteristic
696(1)
15.2.29 Drain-extended MOS (DeMOS) Circuits
697(1)
15.2.30 DeNMOS
697(1)
15.2.31 DeNMOS-SCR Transistor
698(1)
15.2.32 Ultra-high Voltage LDMOS (UHV-LDMOS) Circuits
699(1)
15.2.33 Ultra-high Voltage LDMOS (UHV-LDMOS)
699(1)
15.2.34 UHV-LDMOS Layout - Circular Design
699(1)
15.2.35 Ultra-high Voltage LDMOS (UHV-LDMOS) SCR
699(3)
15.3 Summary and Closing Comments
702(1)
References
702(7)
16 ESD in Advanced CMOS 709(74)
16.1 Interconnects and ESD
709(1)
16.2 Aluminum Interconnects
710(4)
16.3 Interconnects - Vias
714(1)
16.3.1 Tapered Aluminum Via
714(1)
16.4 Interconnects - Wiring
715(4)
16.4.1 Titanium Interconnects Ti/Al/Ti
715(4)
16.4.1.1 Copper Interconnects
715(4)
16.5 Junctions
719(6)
16.5.1 Abrupt Junctions
719(1)
16.5.2 Low-doped Drains and ESD
720(1)
16.5.3 Extension Implants
721(1)
16.5.4 Gate Structures
722(1)
16.5.4.1 Salicides and ESD
722(1)
16.5.5 Salicide Resistance Model
723(2)
16.6 Titanium Silicide
725(6)
16.6.1 Molybdenum and Titanium Salicide
729(1)
16.6.2 Cobalt Silicides
730(1)
16.7 Shallow Trench Isolation
731(3)
16.7.1 Isolation Structures and ESD
731(1)
16.7.2 LOCOS Isolation
731(3)
16.8 LOCOS-bound ESD Structures
734(1)
16.9 LOCOS-bound p+/n-well Junction Diodes
734(2)
16.10 LOCOS-bound n+ Junction Diodes
736(39)
16.11 LOCOS-bound n-well/Substrate Diodes
737(1)
16.12 LOCOS-bound Lateral N-Well to N-Well Bipolar ESD Element
738(1)
16.13 LOCOS-bound Lateral N+ to N-well Bipolar ESD Element
738(1)
16.14 LOCOS-bound Lateral pnp Bipolar ESD Element
739(1)
16.15 LOCOS-bound Thick Oxide MOSFET ESD Element
739(1)
16.16 Shallow Trench Isolation
739(2)
16.16.1 Shallow Trench Isolation Pull-down
740(1)
16.17 STI-bound ESD Structures
741(5)
16.17.1 STI-bound p+/N-well Junctions
741(3)
16.17.2 STI-bound N+ Junction Diodes
744(1)
16.17.3 STI-bound N-well/Substrate Diodes
745(1)
16.17.3.1 Substrates
745(1)
16.17.4 Substrate P++ with Epitaxial Region
745(1)
16.18 Substrate Modeling - Electrical and Thermal Discretization
746(4)
16.19 Heavily Doped Substrates
750(16)
16.19.1 Substrates: Heavily Doped Substrates
750(1)
16.19.2 P-substrate Doping Scaling
751(1)
16.19.2.1 Substrates: Low-doped Substrates
751(1)
16.19.3 Diffused Wells
752(1)
16.19.4 Diffused Well Vertical Profile
753(2)
16.19.5 Retrograde and Vertically Modulated Wells
755(1)
16.19.6 Retrograde and Vertically Modulated Wells
756(4)
16.19.7 Retrograde Well Substrate Modulation
760(6)
16.20 Retrograde Wells and ESD Scaling
766(9)
16.20.1 Sub-collectors
769(3)
16.20.2 Ballast Resistors
772(3)
16.21 Triple Well and Isolated MOSFET CMOS
775(4)
16.21.1 Deep Trench Isolation
776(1)
16.21.2 Deep Trench as Guard Rings
777(1)
16.21.3 Deep Trench and Latchup
778(1)
16.21.4 Deep Trench and ESD Structures
778(1)
16.22 Summary and Closing Comments
779(1)
References
779(4)
17 ESD in Silicon on Insulator 783(38)
17.1 Silicon on Insulator (SOI) Technologies
783(1)
17.1.1 SOI ESD Design Concepts
783(1)
17.1.2 Distinction of SOI versus Bulk CMOS ESD Structures
783(1)
17.1.3 Vertical Parasitic Devices
784(1)
17.1.4 No Parasitic Devices
784(1)
17.2 Elimination of CMOS Latchup
784(1)
17.2.1 Isolation of CMOS NFETs and CMOS PFETs
785(1)
17.3 Lack of Vertical Bipolar Transistors
785(1)
17.4 Floating Gate Tie Downs
785(1)
17.5 Physical Separation of MOSFETs from the Bulk Substrate
785(1)
17.6 SOI ESD Design Fundamental Concepts
786(5)
17.6.1 Spatial Uniformity
786(1)
17.6.2 Avoidance of Localized Heating
787(1)
17.6.3 Avoidance of SOI MOSFET Dielectric Breakdown
787(1)
17.6.4 Avoidance of MOSFET Second Breakdown
787(1)
17.6.5 SOI versus Bulk CMOS Layout Distinctions
787(1)
17.6.6 SOI Design MOSFET with Body Contact: T-Shape Layout Style
788(1)
17.6.7 Floating Body Issue
788(1)
17.6.8 SOI MOSFET Body Contact
788(1)
17.6.9 SOI T-shaped Lateral Diode
789(1)
17.6.10 SOI ESD Double Diode Circuit with T- and H-shaped Devices
789(1)
17.6.11 SOI ESD Double Diode Network with p-channel MOSFETS
790(1)
17.6.12 SOI ESD Double Diode Network with Body Contacted n-channel MOSFET Devices
791(1)
17.7 SOI Lateral Diode Structure
791(1)
17.8 Transistors - Bulk versus SOI Technology
791(5)
17.8.1 SOI Lateral Diode Design
792(1)
17.8.2 SOI Lateral Diode Perimeter Design
793(1)
17.8.3 SOI Lateral Diode Channel Length Design
793(1)
17.8.4 SOI Lateral p+/n-/n+ Diode Structure
793(1)
17.8.5 SOI Lateral p+/p-/n+ Diode Structure
794(1)
17.8.6 SOI Lateral p+/p-/n-/n+ Diode Structure
794(1)
17.8.7 SOI Lateral Ungated p+/p-/n-/n+ Diode Structure
795(1)
17.8.8 SOI Lateral Diode Structures and SOI MOSFET Halos
795(1)
17.9 SOI Buried Resistors (BR) Elements
796(1)
17.10 Dynamic Threshold MOS (DTMOS) SOI MOSFET
797(1)
17.11 SOI P+ Body Contact Abutting n+ Drain
798(1)
17.11.1 P+ Body Contact Separated from n+ Drain
798(1)
17.11.2 Polysilicon Body Isolation from n+ Contact
798(1)
17.12 Transmission Line Pulse (TLP) Testing of SOI Diode Designs
798(1)
17.13 SOI ESD with MOSFET Drain and Body Width Ratio Variation
799(1)
17.14 SOI Dual-Gate MOSFET Structure
799(1)
17.15 SOI ESD Design - Mixed Voltage T-Shape Layout Style
800(2)
17.15.1 SOI ESD Design: Mixed Voltage Diode Strings
801(1)
17.15.2 Advantages and Disadvantages of Mixed Voltage SOI Diode Strings
801(1)
17.16 SOI ESD Design: Double Diode Network
802(1)
17.17 Bulk to SOI ESD Design Remapping
803(1)
17.18 SOI ESD Diode Design Parameters
804(4)
17.18.1 SO! ESD Diode Device versus Diode Perimeter
804(1)
17.18.2 SOI ESD as a Function of Polysilicon Length
804(2)
17.18.2.1 SOI Multi-finger ESD Diode Structure
804(1)
17.18.2.2 SOI ESD Structure Cross-section
805(1)
17.18.3 Layout of SOI ESD Double Diode Structure
806(27)
17.18.3.1 SOI ESD Results as a Function of ESD Structure Perimeter
806(1)
17.18.3.2 SOI ESD Results as a Function of Finger Number
807(1)
17.19 SOI ESD Design in Mixed Voltage Interface Environments
808(1)
17.20 Comparison of Bulk with SOI ESD Results
809(1)
17.21 SOI ESD Design with Aluminum Interconnects
810(2)
17.22 SOI ESD Design with Copper Interconnects
812(1)
17.23 SOI ESD Design with Gate Circuitry
813(2)
17.24 Summary and Closing Comments
815(1)
References
815(6)
18 ESD in Analog Circuits 821(44)
18.1 Analog Design Circuits
821(1)
18.2 Single-ended Receivers
822(1)
18.3 Schmitt Trigger Receivers
822(1)
18.4 Differential Receivers
822(2)
18.5 Comparators
824(1)
18.6 Current Sources
825(1)
18.7 Current Mirrors
825(1)
18.8 Widlar Current Mirror
826(1)
18.9 Wilson Current Mirror
826(1)
18.10 Voltage Regulators
827(1)
18.11 Buck Converters
828(1)
18.12 Boost Converters
828(1)
18.13 Buck-Boost Converters
829(1)
18.14 Cuk Converters
830(1)
18.15 Voltage Reference Circuits
830(1)
18.16 Brokaw Bandgap Voltage Reference
830(1)
18.17 Converters
831(1)
18.18 Analog-to-Digital Converter (ADC)
831(1)
18.19 Digital-to-Analog Converters (DAC)
832(1)
18.20 Oscillators
832(1)
18.21 Phase Lock Loop (PLL) Circuits
832(1)
18.22 Delay Locked Loop (DLL)
833(1)
18.23 Analog and ESD Design Synthesis
833(3)
18.23.1 Early ESD Failures in Analog Design
833(1)
18.23.2 Mixed Voltage Interface - Voltage Regulator Failures
833(1)
18.23.3 N-channel MOSFET Voltage Regulator
834(1)
18.23.4 P-channel MOSFET Voltage Regulator
835(20)
18.23.4.1 ESD Protection Solution for Voltage Regulator - GGNMOS ESD Bypass Between Power Rails
835(1)
18.23.4.2 ESD Protection Solution for Voltage Regulator - Series Diode String ESD Bypass
836(1)
18.24 Analog Chip Architecture - Separation of Analog Power from Digital Power, AVDD-DVDD
836(1)
18.25 ESD Failure in Phase Lock Loop (PLL) and System Clock
837(1)
18.26 ESD Failure in Current Mirrors
837(1)
18.27 ESD Failure in Schmitt Trigger Receivers
838(2)
18.28 ESD Design Practice - Prevent ESD Failure in Schmitt Trigger
840(1)
18.29 Analog-Digital Architecture: Isolated Digital and Analog Domains
841(1)
18.30 ESD Protection Solution - Connectivity of AVDD-to-VDD
842(1)
18.31 ESD Solution: Connectivity of AVss-to-DVss
843(1)
18.32 Digital and Analog Domain with ESD Power Clamps
843(3)
18.33 Digital and Analog Domain with Master-Slave ESD Power Clamps
846(1)
18.34 High Voltage, Digital, and Analog Domain Floorplan
846(1)
18.35 Floor-planning of Digital and Analog
846(3)
18.36 Inter-domain Signal Lines ESD Failures
849(1)
18.37 Digital-to-Analog Signal Line ESD Failures
849(2)
18.38 Digital-to-Analog Core Spatial Isolation
851(1)
18.39 Digital-to-Analog Core Ground Coupling
851(1)
18.40 Digital-to-Analog Core Resistive Ground Coupling
852(1)
18.41 Digital-to-Analog Core Diode Ground Coupling
852(1)
18.42 Domain-to-Domain Signal Line ESD Networks
852(1)
18.43 Domain-to-Domain Third-party Coupling Networks
853(1)
18.44 Domain-to-Domain Cross-domain ESD Power Clamp
854(1)
18.45 Digital-to-Analog Domain Moat
855(1)
18.46 Analog and ESD Circuit Integration
855(1)
18.46.1 Analog and Power Technology and ESD Circuit Integration
855(1)
18.46.2 Analog ESD - Isolated and Non-isolated Designs
855(1)
18.47 Integrated Body Ties
856(1)
18.48 Self-Protecting vs Non-self Protecting Designs
856(1)
References
856(9)
19 ESD in RF CMOS 865(26)
19.1 CMOS and ESD
865(1)
19.2 RF CMOS
865(1)
19.3 RF CMOS and ESD
865(1)
19.4 RF CMOS ESD Failure Mechanisms
865(1)
19.5 RF CMOS - ESD Device Comparisons
866(1)
19.6 RF ESD Metrics
867(1)
19.7 Grounded Gate n-channel MOSFET versus STI Diode
868(1)
19.8 Silicon-controlled Rectifier
869(1)
19.9 SCR versus GGNMOS
869(1)
19.10 Shallow Trench Isolation and Polysilicon Gated Diodes
869(1)
19.11 RF ESD Design
870(1)
19.12 RF ESD Design Layout - Circular RF ESD Devices
870(1)
19.13 Disadvantage of RF ESD Circular Element
871(1)
19.14 RF ESD Design - ESD Wiring Design
872(1)
19.15 RF ESD Design - Loading Capacitance
872(1)
19.16 Metal Capacitance
873(1)
19.17 Analog Metal (AM)
873(1)
19.18 RF ESD Design Practices
874(1)
19.19 RF Passives - ESD and Schottky Barrier Diodes
874(1)
19.19.1 Silicon Schottky Barrier Diodes
874(1)
19.20 Schottky Barrier Diodes and Metallurgy
875(1)
19.21 Silicon Germanium Schottky Barrier Diodes
876(1)
19.22 Schottky Barrier RF ESD Design Practice
877(1)
19.23 RF Passives - ESD and Inductors
877(1)
19.24 Quality Factor, Q
878(1)
19.25 Incremental Model of an Inductor
878(1)
19.26 Inductor Coil Parameters
878(4)
19.26.1 ESD Testing of RF Inductors
880(1)
19.26.2 Inductor Coil Geometry and ESD
880(1)
19.26.3 Steps and Process of Inductor Failure
881(1)
19.27 RF Passives - ESD and Capacitors
882(1)
19.28 Capacitors and RF Applications
882(1)
19.29 Capacitors in ESD Networks
882(1)
19.30 Types of Radio Frequency Capacitors
883(1)
19.31 Metal-Oxide-Semiconductor and Metal-Insulator-Metal Capacitors
883(1)
19.32 Varactors and Hyper-abrupt Junction Varactor Capacitors
884(1)
19.33 Metal-ILD-Metal Capacitors
884(1)
19.34 Vertical Parallel Plate (VPP) Capacitors
884(1)
19.35 Tips: ESD RF Design Practices for Capacitors
885(1)
19.36 Summary and Closing Comments
886(1)
Problems
886(2)
References
888(3)
20 ESD in Silicon Germanium 891(44)
20.1 Heterojunctions Bipolar Transistors
891(1)
20.2 Silicon Germanium
891(1)
20.3 Silicon Germanium HBT Devices
892(1)
20.4 Silicon Germanium Device Structure
893(1)
20.5 Silicon Germanium Film Deposition
894(1)
20.6 Silicon Germanium Emitter-Base Region
895(1)
20.7 Silicon Germanium Physics
895(1)
20.8 Silicon Germanium Bandgap
896(1)
20.9 Silicon Germanium Intrinsic Temperature
896(1)
20.10 Position-dependent Silicon Germanium Profile
896(1)
20.11 Position-dependent Intrinsic Temperature
897(1)
20.12 SiGe Collector Current with Graded Germanium Concentration
897(1)
20.13 Silicon Germanium ESD and Time Constants
898(1)
20.14 Silicon Germanium Base Transit Time
898(1)
20.15 Silicon Germanium Breakdown Voltages
898(1)
20.16 Silicon Germanium ESD Measurements
899(1)
20.17 Silicon Germanium Collector-to-Emitter ESD Stress
899(1)
20.18 Transmission Line Pulse Testing of Silicon Germanium HBT
899(1)
20.19 Transmission Line Pulse (TLP) I-V Characteristic
899(2)
20.20 Wunsch-Bell Characteristic of Silicon Germanium HBT
901(1)
20.21 Comparison of Silicon Germanium HBT and Silicon BJT
901(1)
20.22 Wunsch-Bell Characteristic of SiGe HBT versus Si BJT
902(2)
20.23 Intrinsic Base Resistance in SiGe HBT
904(1)
20.24 SiGe HBT Electro-thermal HBM Simulation of Collector-Emitter Stress
904(1)
20.25 Silicon Germanium Transistor Emitter-Base Design
905(2)
20.26 Epitaxial-Base Hetero-Junction Bipolar Transistor (HBT) Emitter-Base Design
907(1)
20.27 Self-aligned Silicon Germanium HBT Device
907(1)
20.28 Non-Self Aligned Silicon Germanium HBT
908(1)
20.29 Emitter-Base Design RF Frequency Performance Metrics
908(1)
20.30 SiGe HBT Emitter-Base Resistance Model
909(1)
20.31 SiGe HBT Emitter-Base Design and Silicide Placement
909(1)
20.32 Silicide Material and ESD
910(1)
20.33 Titanium Silicide and ESD
911(2)
20.34 Cobalt Salicide
913(1)
20.35 Self-aligned (SA) Emitter Base Design
914(3)
20.36 Non-Self Aligned (NSA) Emitter Base Design
917(1)
20.37 Non-Self Aligned HBT Human Body Model (HBM) Step Stress
918(1)
20.38 Transmission Line Pulse (TLP) Step Stress
918(3)
20.39 RF Testing of SiGe HBT Emitter-Base Configuration
921(2)
20.40 Unity Current Gain Cutoff Frequency - Collector Current Plots
923(1)
20.41 fmAx and fT
924(1)
20.42 Electrothermal Simulation of Emitter-Base Stress
925(1)
20.43 Field-Oxide (FOX) Isolation Defined Silicon Germanium Heterojunction Bipolar Transistor HBM Data
926(1)
20.44 Silicon Germanium HBT Multiple-emitter Study
927(1)
20.45 RF ESD Design Practice
927(1)
20.46 Silicon Germanium ESD Failure Mechanisms
928(1)
20.47 Summary and Closing Comments
928(1)
References
928(7)
21 ESD in Silicon Germanium Carbon 935(16)
21.1 Heterojunctions and Silicon Germanium Carbon Technology
935(1)
21.2 Silicon Germanium Carbon
935(2)
21.3 Silicon Germanium Carbon Collector-Emitter ESD Measurements
937(3)
21.4 Silicon Germanium Transistor Emitter-Base Design
940(3)
21.5 Silicon Germanium Carbon - ESD-Induced S-Parameter Degradation
943(2)
21.6 Silicon Germanium Carbon ESD Failure Mechanisms
945(1)
21.7 Summary and Closing Comments
945(1)
References
946(5)
22 ESD in GaAs 951(20)
22.1 Gallium Arsenide Technology and ESD
951(1)
22.2 Gallium Arsenide Energy-to-Failure, and Power-to-Failure
951(3)
22.3 Gallium Arsenide ESD Failures in Active and Passive Elements
954(1)
22.3.1 Interconnects
954(1)
22.3.2 Thin Film Metal Resistors
955(1)
22.3.3 Metal-Insulator-Metal (MIM) Capacitors
955(1)
22.4 Gallium Arsenide HBT Devices and ESD
955(1)
22.5 Gallium Arsenide HBT Device ESD Results
956(1)
22.6 Gallium Arsenide HBT Diode Strings
957(2)
22.7 Gallium Arsenide HBT-based Passive Elements
959(1)
22.8 GaAs HBT Base-Collector Varactor
959(1)
22.9 Gallium Arsenide Technology Table of Failure Mechanisms
960(1)
22.10 Application - GaAs Power Amplifier in a Cell Phone
961(4)
22.10.1 Problems
961(1)
22.10.2 Indium Gallium Arsenide and ESD
961(3)
22.10.3 Indium Phosphide (InP) and ESD
964(1)
22.10.4 ESD GaN Failure Mechanisms
965(1)
22.11 Summary and Closing Comments
965(1)
Questions
965(1)
References
966(5)
23 ESD in Bulk and SOI FINFET 971(8)
23.1 Early FinFET Structures
971(1)
23.2 FinFET Structure and Design Parameters
971(2)
23.3 FinFET Parameters
973(4)
23.3.1 FinFET Channel Length
973(1)
23.3.2 Effective Film Thickness
973(1)
23.3.3 Temperature
974(1)
23.3.4 Self-heating in FinFET Issues
974(1)
23.3.5 FinFET Current Distribution
974(1)
23.3.6 FinFET Current Constriction
974(3)
23.4 Summary and Closing Comments
977(1)
References
977(2)
24 MEMs 979(12)
24.1 Micro-electromechanical (MEM) Devices
979(1)
24.2 ESD Concerns in Micro-electromechanical (MEM) Devices
980(2)
24.2.1 ESD Failure in MEM Devices - Electrical Breakdown
980(1)
24.2.2 MEM Structures - Gap Variation
980(1)
24.2.3 Stiction
980(1)
24.2.4 Residual Charge
981(1)
24.2.5 Mechanical Deformation
981(1)
24.2.5.1 Micro-motors
981(1)
24.2.6 ESD Concerns in Micro-motors
981(1)
24.2.7 Nano-welding
981(1)
24.2.8 Residual Particles
981(1)
24.3 Actuators
982(2)
24.3.1 Torsional Ratcheted Actuator
982(1)
24.3.2 Comb-to-Comb ESD Failure
983(1)
24.3.3 Charged Device Model
983(1)
24.4 Micro-electromechanical (MEM) RF Switches
984(1)
24.4.1 Radio Frequency (RF) Switches
984(1)
24.4.2 RF Switch ESD Concerns
984(1)
24.4.3 Mechanical Deformation
984(1)
24.4.4 Mechanical Failure
984(1)
24.4.5 Osterberg Model
984(1)
24.4.6 Collapse Voltage
985(1)
24.5 Micro-electromechanical (MEM) Mirrors
985(4)
24.5.1 Micro-mirrors
985(2)
24.5.2 ESD Concerns in Micro-electromechanical (MEM) Mirrors
987(2)
24.5.3 Mechanical Motion
989(1)
24.5.4 Mirror-to-Mirror Failures
989(1)
24.6 Summary and Closing Comments
989(1)
References
989(2)
25 Magnetic Recording 991(12)
25.1 Magnetic Recording Technology
991(4)
25.1.1 Magnetic Recording Industry
991(1)
25.1.2 Magneto-Resistor (MR) Structure
991(2)
25.1.2.1 Magneto-Resistor Head ESD Damage - Stripe Resistance Shift
991(2)
25.1.3 MR Stripe to Magnetic Shield ESD Failures
993(1)
25.1.4 Magneto-Recording Head - Write Coil ESD Failure
993(1)
25.1.5 Giant Magneto-Resistors (GMR)
993(1)
25.1.5.1 ESD Failure Mechanisms in GMR Heads
994(1)
25.1.6 Tunneling Magnetic Resistor (TMR)
994(1)
25.2 Summary and Closing Comments
995(1)
References
995(8)
26 Photomasks 1003(10)
26.1 Photomasks and Reticles
1003(1)
26.1.1 Photomasks
1003(1)
26.2 ESD Concerns in Photomasks
1003(1)
26.2.1 Electrostatic Charging on Photomasks
1003(1)
26.2.2 ESD Discharge on a Photomask
1004(1)
26.3 Avalanche Breakdown in Photomasks
1004(3)
26.3.1 Avalanche Phenomena - Townsend Breakdown Model
1004(2)
26.3.2 Avalanche Breakdown - Paschen Breakdown Model
1006(1)
26.4 Electrical Model in Photomasks
1007(1)
26.4.1 RLC Response - Montoya, Levit, and Englisch Model
1007(1)
26.5 Failure Defects in Photomasks
1008(3)
26.5.1 Mask Defects
1008(1)
26.5.2 Mask Inspection Tools
1008(3)
26.6 Summary and Closing Comments
1011(1)
References
1011(2)
Appendix Table of Acronyms 1013
A Glossary of Terms - EMC Terminology
1015(2)
B Appendix B. ESD Standards
1017(4)
B.1 ESD Association
1017(1)
B.2 International Organization of Standards
1018(1)
B.2.1 IEC
1018(1)
B.2.2 RTCA
1018(1)
B.3 Department of Defense
1018(1)
B.4 Military Standards
1019(1)
B.5 Airborne Standards and Lightning
1019(2)
C Index
1021(34)
D Wiley Series in Electrostatic Discharge (ESD) and Electrical Overstress (EOS)
1055(2)
D.1 Additional Wiley Texts
1055(2)
E ESD Design Rules
1057(4)
E.1 ESD Design Rule Check (DRC)
1057(1)
E.2 Electrostatic Discharge (ESD) Layout Versus Schematic (LVS) Verification
1058(1)
E.3 ESD Electrical Rule Check (ERC)
1059(2)
F Guard Ring Design Rules
1061(6)
F.1 Latchup Design Rule Checking (DRC) and Guard Rings
1061(2)
F.1.1 External Latchup
1063(1)
F.2 Latchup Electrical Rule Check (ERC)
1063(1)
F.2.1 N-well Contact to p-channel MOSFET Resistance
1063(1)
F.2.2 P-well or p-substrate Contact to n-channel MOSFET Resistance
1064(1)
F.3 Guard Ring Resistance
1064(3)
G EOS Design Rules and Checklist
1067(2)
G.1 Electrical Overstress (EOS) Design Rule Checking
1067(1)
G.2 Electrical Overstress (EOS) Layout Versus Schematic (LVS) Verification
1067(1)
G.3 Electrical Overstress (EOS) Electrical Rule Check (ERC)
1068(1)
H Latchup Design Rules
1069(8)
H.1 Latchup Design Rule Checking (DRC)
1069(3)
H.2 Latchup Electrical Rule Check (ERC)
1072(5)
H.2.1 N-well Contact to p-channel MOSFET Resistance
1072(1)
H.2.2 P-Well or P-Substrate Contact to N-Channel MOSFET Resistance
1072(1)
H.2.3 Guard Ring Resistance
1072(5)
I ESD Cookbook
1077(2)
I.1 Electrostatic Discharge (ESD) Cookbook
1077(2)
I.1.1 Table of Pin Types
1077(2)
J EOS Cookbook
1079(2)
J.1 Electrical Overstress (EOS) Cookbook
1079(2)
J.1.1 Table of Pin Types
1080(1)
K Latchup Cookbook
1081(6)
K.1 Latchup Design Rule Checking (DRC)
1081(2)
K.2 Latchup Electrical Rule Check (ERC)
1083(4)
K.2.1 N-well Contact to p-channel MOSFET Resistance
1083(1)
K.2.2 P-well or p-substrate Contact to n-channel MOSFET Resistance
1084(1)
K.2.3 Guard Ring Resistance
1084(3)
L ESD Design and Release Check List
1087(2)
L.1 ESD Design Release
1087(1)
L.2 Electrostatic Discharge (ESD) Checklists
1087(2)
M EOS Design and Release Checklist
1089(4)
M.1 Electrical Overstress (EOS) and ESD Design Release
1089(1)
M.2 Electrical Overstress (EOS) Design Release Process
1089(1)
M.3 Electrical Overstress (EOS) Checklists
1090(1)
M.4 An EOS Checklist
1091(2)
N Latchup Design and Release Checklist
1093
N.1 Latchup Design Rule Checking (DRC)
1093(2)
N.2 Latchup Electrical Rule Checking (ERC)
1095(1)
N.2.1 N-well Contact to p-channel MOSFET Resistance
1095(1)
N.2.2 P-well or P-Substrate Contact to n-channel MOSFET Resistance
1095(1)
N.3 Latchup Checklists
1095(1)
N.4 A Latchup Design and Release Checklist
1096
Index 109
Steven H. Voldman is the first IEEE Fellow for contributions in ESD protection in CMOS, SOI, and Silicon Germanium technology. He has been at the forefront of every major development in semiconductor technology over the past thirty years.