Atnaujinkite slapukų nuostatas

El. knyga: Essential Guide to Electronic Material Surfaces and Interfaces

(Professor, Departments of Electrical & Computer Engineering, Physics, and Center for Materials Research Scholar)
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-May-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119027133
  • Formatas: PDF+DRM
  • Išleidimo metai: 12-May-2016
  • Leidėjas: John Wiley & Sons Inc
  • Kalba: eng
  • ISBN-13: 9781119027133

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

An Essential Guide to Electronic Material Surfaces and Interfaces is a streamlined yet comprehensive introduction that covers the basic physical properties of electronic materials, the experimental techniques used to measure them, and the theoretical methods used to understand, predict, and design them.

Starting with the fundamental electronic properties of semiconductors and electrical measurements of semiconductor interfaces, this text introduces students to the importance of characterizing and controlling macroscopic electrical properties by atomic-scale techniques. The chapters that follow present the full range of surface and interface techniques now being used to characterize electronic, optical, chemical, and structural properties of electronic materials, including semiconductors, insulators, nanostructures, and organics. The essential physics and chemistry underlying each technique is described in sufficient depth for students to master the fundamental principles, with numerous examples to illustrate the strengths and limitations for specific applications. As well as references to the most authoritative sources for broader discussions, the text includes internet links to additional examples, mathematical derivations, tables, and literature references for the advanced student, as well as professionals in these fields. This textbook fills a gap in the existing literature for an entry-level course that provides the physical properties, experimental techniques, and theoretical methods essential for students and professionals to understand and participate in solid-state electronics, physics, and materials science research.

An Essential Guide to Electronic Material Surfaces and Interfaces is an introductory-to-intermediate level textbook suitable for students of physics, electrical engineering, materials science, and other disciplines. It is essential reading for any student or professional engaged in surface and interface research, semiconductor processing, or electronic device design. 

Preface xiii
About the Companion Websites xv
1 Why Surfaces and Interfaces of Electronic Materials 1(13)
1.1 The Impact of Electronic Materials
1(1)
1.2 Surface and Interface Importance as Electronics Shrink
1(4)
1.3 Historical Background
5(5)
1.3.1 Contact Electrification and the Development of Solid State Concepts
5(1)
1.3.2 Crystal Growth and Refinement
5(1)
1.3.3 Transistor Development and the Birth of Semiconductor Devices
6(2)
1.3.4 Surface Science and Microelectronics
8(2)
1.4 Next Generation Electronics
10(1)
1.5 Problems
10(1)
References
11(2)
Further Reading
13(1)
2 Semiconductor Electronic and Optical Properties 14(8)
2.1 The Semiconductor Band Gap
14(1)
2.2 The Fermi Level and Energy Band Parameters
15(2)
2.3 Band Bending at Semiconductor Surfaces and Interfaces
17(1)
2.4 Surfaces and Interfaces in Electronic Devices
17(2)
2.5 Effects of Localized States: Traps, Dipoles, and Barriers
19(1)
2.6 Summary
19(1)
2.7 Problems
20(1)
References
20(1)
Further Reading
21(1)
3 Electrical Measurements of Surfaces and Interfaces 22(20)
3.1 Sheet Resistance and Contact Resistivity
22(1)
3.2 Contact Measurements: Schottky Barrier Overview
23(12)
3.2.1 Ideal Schottky Barriers
24(2)
3.2.2 Real Schottky Barriers: Role of Interface States
26(2)
3.2.3 Schottky Barrier Measurements
28(6)
3.2.4 Schottky Barrier Conclusions
34(1)
3.3 Heterojunction Band Offsets: Electrical Measurements
35(3)
3.4 Summary
38(1)
3.5 Problems
38(1)
References
39(2)
Further Reading
41(1)
4 Localized States at Surfaces and Interfaces 42(13)
4.1 Interface State Models
42(1)
4.2 Intrinsic Surface States
43(6)
4.2.1 Experimental Approaches
43(2)
4.2.2 Theoretical Approaches
45(4)
4.2.3 Key Intrinsic Surface State Results
49(1)
4.3 Extrinsic Surface States
49(3)
4.4 The Solid State Interface: Changing Perspectives
52(1)
4.5 Problems
52(1)
References
53(1)
Further Reading
54(1)
5 Ultrahigh Vacuum Technology 55(12)
5.1 Ultrahigh Vacuum Chambers
55(2)
5.1.1 Ultrahigh Vacuum Pressures
55(1)
5.1.2 Stainless Steel UHV Chambers
56(1)
5.2 Pumps
57(4)
5.3 Manipulators
61(1)
5.4 Gauges
61(1)
5.5 Residual Gas Analysis
62(1)
5.6 Deposition Sources
62(2)
5.7 Deposition Monitors
64(1)
5.8 Summary
65(1)
5.9 Problems
65(1)
References
65(1)
Further Reading
66(1)
6 Surface and Interface Analysis 67(9)
6.1 Surface and Interface Techniques
67(3)
6.2 Excited Electron Spectroscopies
70(2)
6.3 Principles of Surface Sensitivity
72(1)
6.4 Multi-technique UHV Chambers
73(2)
6.5 Summary
75(1)
6.6 Problems
75(1)
References
75(1)
Further Reading
75(1)
7 Surface and Interface Spectroscopies 76(42)
7.1 Photoemission Spectroscopy
76(13)
7.1.1 The Photoelectric Effect
76(1)
7.1.2 Energy Distribution Curves
77(1)
7.1.3 Atomic Orbital Binding Energies
78(1)
7.1.4 Photoionization Cross Sections
78(3)
7.1.5 Principles of X-Ray Photoelectron Spectroscopy
81(5)
7.1.6 Advanced Surface and Interface Techniques
86(1)
7.1.7 Excitation Sources: X-Ray, Ultraviolet, and Synchrotron
87(1)
7.1.8 Electron Energy Analyzers
88(1)
7.1.9 Photoemission Spectroscopy Summary
89(1)
7.2 Auger Electron Spectroscopy
89(9)
7.2.1 Auger versus X-Ray Transition Probabilities
92(1)
7.2.2 Auger Electron Energies
93(3)
7.2.3 Quantitative AES Analysis
96(2)
7.2.4 Auger Electron Spectroscopy Summary
98(1)
7.3 Electron Energy Loss Spectroscopy
98(6)
7.3.1 Dielectric Response Theory
100(1)
7.3.2 Surface Phonon Scattering
101(1)
7.3.3 Plasmon Scattering
102(1)
7.3.4 Interface Electronic Transitions
103(1)
7.3.5 Transmission Electron Microscopy Energy Loss Spectroscopy
104(1)
7.3.6 Electron Energy Loss Spectroscopy Summary
104(1)
7.4 Rutherford Backscattering Spectrometry
104(8)
7.4.1 Theory of Rutherford Backscattering
105(3)
7.4.2 Rutherford Backscattering Equipment
108(1)
7.4.3 RBS Experimental Spectra
109(1)
7.4.4 RBS Interface Studies
110(1)
7.4.5 Channeling and Blocking
111(1)
7.4.6 Rutherford Backscattering Spectroscopy Summary
112(1)
7.5 Surface and Interface Technique Summary
112(1)
7.6 Problems
113(3)
References
116(1)
Further Reading
117(1)
8 Dynamical Depth-Dependent Analysis and Imaging 118(13)
8.1 Ion Beam-Induced Surface Ablation
118(1)
8.2 Auger Electron Spectroscopy
119(2)
8.3 X-Ray Photoemission Spectroscopy
121(1)
8.4 Secondary Ion Mass Spectrometry
122(6)
8.4.1 SIMS Principles
122(1)
8.4.2 SIMS Equipment
123(3)
8.4.3 Secondary Ion Yields
126(2)
8.4.4 Organic and Biological Species
128(1)
8.4.5 SIMS Summary
128(1)
8.5 Spectroscopic Imaging
128(1)
8.6 Depth-Resolved and Imaging Summary
129(1)
8.7 Problems
129(1)
References
130(1)
Further Reading
130(1)
9 Electron Beam Diffraction and Microscopy of Atomic-Scale Geometrical Structure 131(21)
9.1 Low Energy Electron Diffraction — Principles
131(10)
9.1.1 Low-Energy Electron Diffraction Techniques
132(1)
9.1.2 LEED Equipment
132(2)
9.1.3 LEED Kinematics
134(1)
9.1.4 LEED Reconstructions, Surface Lattices, and Superstructures
134(3)
9.1.5 Representative Semiconductor Reconstructions
137(4)
9.2 Reflection High Energy Electron Diffraction
141(3)
9.2.1 Principles of RHEED
141(1)
9.2.2 Coherence Length
142(1)
9.2.3 RHEED Oscillations
143(1)
9.3 Scanning Electron Microscopy
144(1)
9.3.1 Scanning Auger Microscopy
144(1)
9.3.2 Photoelectron Microscopy
144(1)
9.4 Transmission Electron Microscopy
145(3)
9.4.1 Atomic Imaging: Z-Contrast
145(1)
9.4.2 Surface Atomic Geometry
146(1)
9.4.3 Electron Energy Loss Spectroscopy
146(2)
9.5 Electron Beam Diffraction and Microscopy Summary
148(1)
9.6 Problems
149(1)
References
150(1)
Further Reading
151(1)
10 Scanning Probe Techniques 152(14)
10.1 Atomic Force Microscopy
152(3)
10.1.1 Non-Contact Mode AFM
153(1)
10.1.2 Kelvin Probe Force Microscopy
153(2)
10.1.3 Contact Mode AFM
155(1)
10.2 Scanning Tunneling Microscopy
155(7)
10.2.1 STM Overview
156(2)
10.2.2 Tunneling Theory
158(3)
10.2.3 Surface Atomic Structure
161(1)
10.3 Ballistic Electron Energy Microscopy
162(1)
10.4 Atomic Positioning
163(1)
10.5 Summary
164(1)
10.6 Problems
164(1)
References
165(1)
Further Reading
165(1)
11 Optical Spectroscopies 166(27)
11.1 Overview
166(1)
11.2 Optical Absorption
166(2)
11.3 Modulation Techniques
168(1)
11.4 Multiple Surface Interaction Techniques
169(2)
11.5 Spectroscopic Ellipsometry
171(1)
11.6 Surface Enhanced Raman Spectroscopy
171(3)
11.7 Surface Photoconductivity
174(1)
11.8 Surface Photovoltage Spectroscopy
175(5)
11.8.1 Transient Surface Photovoltage Spectroscopy
180(1)
11.9 Photoluminescence Spectroscopy
180(1)
11.10 Cathodoluminescence Spectroscopy
181(9)
11.10.1 Overview
181(1)
11.10.2 Theory
182(1)
11.10.3 Semiconductor Ionization Energies
183(2)
11.10.4 Universal Range—Energy Relations
185(2)
11.10.5 Monte Carlo Simulations
187(1)
11.10.6 Depth-Resolved Cathodoluminescence Spectroscopy
188(1)
11.10.7 Spatially-Resolved Cathodoluminescence Spectroscopy and Imaging
189(1)
11.11 Summary
190(1)
11.12 Problems
191(1)
References
192(1)
Further Reading
192(1)
12 Electronic Material Surfaces 193(20)
12.1 Geometric Structure
193(3)
12.1.1 Surface Relaxation and Reconstruction
193(1)
12.1.2 Extended Geometric Structure
193(3)
12.2 Chemical Structure
196(7)
12.2.1 Crystal Growth
196(1)
12.2.2 Etching
197(2)
12.2.3 Adsorbates
199(1)
12.2.4 Epitaxical Overlayers
199(1)
12.2.5 Growth Modes
200(2)
12.2.6 Interface Chemical Reaction
202(1)
12.3 Electronic Structure
203(6)
12.3.1 Physisorption
204(1)
12.3.2 Chemisorption
204(2)
12.3.3 Surface Dipoles
206(3)
12.4 Summary
209(1)
12.5 Problems
210(1)
References
211(1)
Further Reading
212(1)
13 Surface Electronic Applications 213(10)
13.1 Charge Transfer and Band Bending
213(3)
13.1.1 Sheet Conductance
213(2)
13.1.2 Transient Effects
215(1)
13.2 Oxide Gas Sensors
216(1)
13.3 Granular Gas Sensors
217(1)
13.4 Nanowire Sensors
217(1)
13.5 Chemical and Biosensors
217(3)
13.5.1 Sensor Sensitivity
218(1)
13.5.2 Sensor Selectivity
219(1)
13.6 Surface Electronic Temperature, Pressure, and Mass Sensors
220(1)
13.7 Summary
220(1)
13.8 Problems
221(1)
References
222(1)
Further Reading
222(1)
14 Semiconductor Heterojunctions 223(26)
14.1 Geometrical Structure
223(7)
14.1.1 Epitaxial Growth
223(1)
14.1.2 Lattice Matching
224(4)
14.1.3 Two-Dimensional Electron Gas Heterojunctions
228(1)
14.1.4 Strained Layer Superlattices
228(2)
14.2 Chemical Structure
230(2)
14.2.1 Interdiffusion
230(1)
14.2.2 Chemical Reactions
231(1)
14.2.3 Template Overlayers
231(1)
14.3 Electronic Structure
232(13)
14.3.1 Heterojunction Band Offsets
232(1)
14.3.2 Band Offset Measurements
233(4)
14.3.3 Inorganic Heterojunction Results
237(1)
14.3.4 Organic Heterojunctions
238(1)
14.3.5 Heterojunction Band Offset Theories
238(2)
14.3.6 Interface Effects on Band Offsets
240(1)
14.3.7 Theoretical Methods
241(3)
14.3.8 Band Offset Engineering
244(1)
14.4 Conclusions
245(1)
14.5 Problems
246(1)
References
247(1)
Further Reading
248(1)
15 Metal—Semiconductor Interfaces 249(27)
15.1 Overview
249(1)
15.2 Metal—Semiconductor Interface Dipoles
249(2)
15.3 Interface States
251(7)
15.3.1 Localized States
251(1)
15.3.2 Metal-Induced Gap States
252(2)
15.3.3 Charge Transfer, Electronegativity, and Defects
254(1)
15.3.4 Imperfections, Impurities, and Native Defects
255(1)
15.3.5 Chemisorption, Interface Reaction, and Interfacial Phases
255(1)
15.3.6 Organic Semiconductor—Metal Interfaces
256(2)
15.4 Self-Consistent Electrostatic Calculations
258(1)
15.5 Experimental Schottky Barriers
259(5)
15.5.1 Metals on Si and Ge
260(1)
15.5.2 Metals on III-V Compound Semiconductors
260(2)
15.5.3 Metals on II-VI Compound Semiconductors
262(1)
15.5.4 Other Compound Semiconductors
263(1)
15.5.5 Compound Semiconductor Summary
264(1)
15.6 Interface Barrier Height Engineering
264(2)
15.6.1 Macroscopic Methods
264(1)
15.6.2 Defect Formation
265(1)
15.6.3 Thermally-Induced Phase Formation
266(1)
15.6.4 Interdiffused Ohmic Contacts
266(1)
15.7 Atomic-Scale Control
266(6)
15.7.1 Reactive Metal Interlayers
267(1)
15.7.2 Molecular Buffer Layers
268(1)
15.7.3 Semiconductor Interlayers
268(1)
15.7.4 Wet Chemical Treatments
268(1)
15.7.5 Crystal Growth
269(3)
15.8 Summary
272(1)
15.9 Problems
272(1)
References
273(2)
Further Reading
275(1)
16 Next Generation Surfaces and Interfaces 276(7)
16.1 Current Status
276(2)
16.2 Current Device Challenges
278(1)
16.3 Emerging Directions
279(3)
16.3.1 High-K Dielectrics
279(1)
16.3.2 Complex Oxides
280(1)
16.3.3 Spintronics and Topological Insulators
280(1)
16.3.4 Nanostructures
281(1)
16.3.5 Two-Dimensional Materials
281(1)
16.3.6 Quantum-Scale Interfaces
281(1)
16.4 The Essential Guide Conclusions
282(1)
Appendices
Appendix A Glossary of Commonly Used Symbols
283(3)
Appendix B Table of Acronyms
286(4)
Appendix C Table of Physical Constants and Conversion Factors
290(1)
Appendix D Semiconductor Properties
291(2)
Index 293
Leonard Brillson is a professor of Electrical & Computer Engineering, of Physics, and a Center for Materials Research Scholar at The Ohio State University in Columbus, OH, USA. Prior to that, he directed Xerox Corporation's Materials Research Laboratory and had responsibility for Xerox's long-range physical science and technology programs at the company's research headquarters in Rochester, N.Y. He is a Fellow of IEEE, AAAS, AVS, APS, and MRS and a former Governing Board member of the American Institute of Physics. Professor Brillson has authored over 350 scientific publications in solid-state physics, microelectronics, surface science and materials science and received numerous scientific awards, including the AVS Gaede-Langmuir Award and the National Science Foundation American Competitiveness and Innovation Fellowship for leadership in the field of electrical and computer engineering.