Atnaujinkite slapukų nuostatas

El. knyga: Essential Zebrafish Methods: Genetics and Genomics

Edited by (Professor, Department of Biology, Institute of Neuroscience, University of Oregon, Euge), Edited by (Howard Hughes Medical Institute, Children's Hospital, Boston, MA, USA), Edited by (Professor of Biochemistry and Marine Biology at Northeastern University)
  • Formatas: EPUB+DRM
  • Serija: Reliable Lab Solutions
  • Išleidimo metai: 05-Sep-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780123751614
Kitos knygos pagal šią temą:
  • Formatas: EPUB+DRM
  • Serija: Reliable Lab Solutions
  • Išleidimo metai: 05-Sep-2009
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780123751614
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Due to its prolific reproduction and the external development of the transparent embryo, the zebrafish is the prime model for genetic and developmental studies, as well as research in genomics. While genetically distant from humans, nonetheless the vertebrate zebrafish has comparable organs and tissues that make it the model organism for study of vertebrate development. This book, one of two new volumes in the Reliable Lab Solutions series dealing with zebrafish, brings together a robust and up-to-date collection of time-tested methods presented by the world’s leading scientists. Culled from previously published chapters in Methods in Cell Biology and updated by the original authors where relevant, it provides a comprehensive collection of protocols describing the most widely used techniques relevant to the study of zebrafish genetics and genomics. The methods in this volume were hand-selected by the editors, whose goal was to a provide a handy and cost-effective collection of fail-safe methods, tips, and "tricks of the trade" to both experienced researchers and more junior members in the lab.

    * Provides busy researchers a quick reference for time-tested methods and protocols that really work, updated where possible by the original authors * Gives pragmatic wisdom to the non-specialist from experts in the field with years of experience with trial and error



    Contributors xiii
    Preface xvii
    Haploid Screens and Gamma-Ray Mutagenesis
    Charline Walker
    Update
    2(1)
    Introduction
    2(1)
    Production of Haploid Embryos
    3(3)
    Development of Haploid Embryos
    6(2)
    Genetic Background
    8(2)
    The Haploid Screen
    10(4)
    Limitations of Haploids
    14(2)
    Mosaicism in F1 Screens
    16(1)
    Haploid Screens and Gamma-Ray Mutagenesis
    17(4)
    Nature of Gamma-Ray-Induced Mutations
    21(3)
    Conclusion
    24(6)
    References
    25(5)
    Positional Cloning of Mutated Zebrafish Genes
    William S. Talbot
    Alexander F. Schier
    Update
    30(1)
    Introduction
    30(2)
    Initiating a Positional Cloning Project
    32(4)
    Defining the Critical Region
    36(3)
    Gene Discovery
    39(2)
    Protocol 1
    41(1)
    Protocol 2
    42(1)
    Protocol 3
    42(5)
    References
    44(3)
    The Zebrafish Genome
    John Postlethwait
    Angel Amores
    Allan Force
    Yi-Lin Yan
    Introduction
    47(1)
    Mapping the Zebrafish Genome
    48(2)
    The Zebrafish Gene Map
    50(4)
    Two Genes in Zebrafish for One in Mammals
    54(2)
    Gene Nomenclature in Zebrafish
    56(1)
    Conclusions
    57(5)
    References
    58(3)
    Retroviral-Mediated Insertional Mutagenesis in Zebrafish
    Adam Amsterdam
    Nancy Hopkins
    Update
    61(1)
    Introduction
    62(2)
    Mutagenesis
    64(3)
    Cloning the Mutated Genes
    67(7)
    Future Directions
    74(9)
    References
    77(5)
    Genetic Screens for Maternal-Effect Mutations
    Francisco Pelegri
    Mary C. Mullins
    Update
    82(1)
    Introduction
    83(1)
    Strategies for Maternal-Effect Screens
    84(11)
    Selection of Lines for Genetic Screens
    95(3)
    Recovery and Maintenance of Maternal-Effect Mutations
    98(3)
    Mapping Maternal-Effect Mutations
    101(4)
    Solutions, Materials, and Protocols
    105(4)
    Conclusions
    109(4)
    References
    110(3)
    Behavioral Screening Assays in Zebrafish
    Michael B. Orger
    Ethan Gahtan
    Akira Muto
    Patrick Page-McCaw
    Matthew C. Smear
    Herwig Baier
    Introduction
    113(2)
    General Considerations
    115(1)
    Behavioral Assays
    116(10)
    Conclusions
    126(6)
    References
    126(6)
    Tilling the Zebrafish Genome: A Reverse Genetics Approach
    Bruce W. Draper
    Claire M. McCallum
    Jennifer L. Stout
    Cecilia B. Moens
    Introduction
    132(3)
    Rationale for Reverse Genetics in Zebrafish
    135(1)
    Rationale for Using the CEL1 Assay to Detect ENU-Induced Mutations
    136(2)
    Rationale for Generating a Cryopreserved Mutant Library
    138(1)
    Method of N-Ethyl-N-Nitrosourea (ENU) Mutagenesis and Rearing of F1 Founder Fish
    138(1)
    Generating a Cryopreserved Mutant Library
    139(3)
    Isolating Genomic DNA
    142(2)
    Choosing Fragments to Screen
    144(1)
    CEL1 Endonuclease Assay
    144(5)
    Recovery of Mutations from Cryopreserved Sperm
    149(1)
    Materials Cost Estimate
    150(3)
    References
    151(2)
    The Transgenesis and Gene and Enhancer Trap Methods in Zebrafish by Using the Toι2 Transposable Element
    Koichi Kawakami
    Introduction
    153(2)
    Transgenesis by Using the Toι2 Transposable Element in Zebrafish
    155(6)
    Gene Trap and Enhancer Trap Approaches That Use the Toι2 Transposon System in Zebrafish
    161(8)
    Summary and Perspectives
    169(7)
    References
    171(4)
    Molecular Cytogenetic Methodologies and a Second-Generation BAC Probe Panel Resource for Zebrafish Genomic Analyses
    Charles Lee
    Danielle Palmer
    Jennifer L. Freeman
    Kim H. Brown
    Update
    175(1)
    Introduction
    176(1)
    Methods
    177(7)
    Second-Generation Zebrafish BAC Probe Panel
    184(8)
    References
    188(4)
    The Zon Laboratory Guide to Positional Cloning in Zebrafish
    Yi Zhou
    Nathan Bahary
    Alan Davidson
    David Ransom
    Jennifer Shepard
    Howard Stern
    Nikilaus Trede
    Bruce Barut
    Leonard I. Zon
    Introduction
    192(1)
    Mapping Strains
    192(1)
    Families and Genetic Markers
    193(1)
    Crosses for Line Maintenance and Mapping
    193(2)
    Preparation of the DNA
    195(1)
    Mapping Genes
    196(10)
    Overgo Strategy for Rapid Chromosomal Walks and Positional Cloning
    206(1)
    Protocol for Overgo Probing of High-Density Filters
    207(2)
    General Flow of Information from the Radiation Hybrid Panel Maps, the Sanger Institute Sequencing Project, and Fingerprinting the BACs
    209(4)
    Synteny Between Human, Zebrafish, Fugu, and Tetraodon Genomes
    213(2)
    Proving a Candidate Gene Is Responsible for the Mutant Phenotype
    215(1)
    Morpholinos
    216(4)
    References
    216(3)
    Sleeping Beauty Transposon for Efficient Gene Delivery
    Spencer Hermanson
    Ann E. Davidson
    Sridhar Sivasubbu
    Darius Balciunas
    Stephen C. Ekker
    Update
    219(1)
    Introduction
    220(1)
    Transgenesis Constructs
    220(2)
    Microinjection of the Zebrafish Embryo
    222(2)
    Raising Injected Embryos
    224(3)
    Identifying Transgenic Founders
    227(1)
    Visualizing Fluorescent Reporters
    227(1)
    Molecular Characterization of the Transposon Integration Site
    228(5)
    References
    232(1)
    Transgene Manipulation in Zebrafish by Using Recombinases
    Yang Bai
    Jie Dong
    Gary W. Stuart
    Introduction
    233(5)
    Recombinase-Mediated Transgene Exchange and Mobilization
    238(10)
    Summary and Conclusion
    248(7)
    References
    249(6)
    Highly Efficient Zebrafish Transgenesis Mediated by the Meganuclease I-SceI
    Clemens Grabher
    Jean-Stephane Joly
    Joachim Wittbrodt
    Introduction
    255(5)
    Transgenesis by Meganucleases
    260(17)
    References
    273(4)
    Cloning Zebrafish by Nuclear Transfer
    Haigen Huang
    Bensheng Ju
    Ki-Young Lee
    Shuo Lin
    Introduction
    277(1)
    Recipes for Cell Culture and Nuclear Transfer
    278(1)
    Cell Culture
    278(1)
    Nuclear Transfer
    279(3)
    Summary of Nuclear Transfer
    282(1)
    Potential Applications of Zebrafish Cloning
    283(5)
    References
    284(4)
    Spatial and Temporal Expression of the Zebrafish Genome by Large-Scale In Situ Hybridization Screening
    Bernard Thisse
    Vincent Heyer
    Aline Lux
    Violaine Alunni
    Agnes Degrave
    Iban Seiliez
    Johanne Kirchner
    Jean-Paul Parkhill
    Christine Thisse
    Introduction and Goals
    288(1)
    Preparation of Antisense Digoxigenin (DIG)-Labeled RNA Probes
    288(2)
    Preparation of Embryos
    290(1)
    Reagents and Buffers for In Situ Hybridization
    291(1)
    In Situ Hybridization Protocol
    292(4)
    Double In Situ Protocol
    296(1)
    Recording Results
    297(3)
    Concluding Remarks
    300(6)
    References
    300(3)
    Genetic Backgrounds, Standard Lines, and Their Husbandry
    Bill Trevarrow
    Barrie Robison
    Update
    303(3)
    Introduction
    306(1)
    Nomenclature and Definitions
    307(1)
    Goals for Line Use
    307(1)
    Breeding Strategies
    308(8)
    Cryopreservation
    316(1)
    Monitoring and Response
    317(1)
    Distribution
    318(1)
    Summary and Recommendations
    318(3)
    References
    319(2)
    Common Diseases of Laboratory Zebrafish
    Jennifer L. Matthews
    Introduction
    321(1)
    Diagnostic Evaluation
    321(1)
    Common Diseases of Laboratory Zebrafish
    322(21)
    Zoonosis
    343(5)
    References
    344(3)
    Zebrafish Sperm Cryopreservation
    Stephane Berghmans
    John P. Morris IV
    John P. Kanki
    A. Thomas Look
    Update
    347(1)
    Introduction: Benefits of Zebrafish Sperm Cryopreservation
    348(1)
    Critical Variables Affecting Sperm Cryopreservation
    349(3)
    Zebrafish Sperm Cryopreservation with N, N-Dimethylacetamide
    352(8)
    Future Directions
    360(5)
    References
    361(4)
    Index 365
    Professor of Biochemistry and Marine Biology at Northeastern University, promoted 1996. Joined Northeastern faculty in 1987. Previously a faculty member in Dept. of Biochemistry at the University of Mississippi Medical Center, 1983-1987.Principal Investigator in the U.S. Antarctic Program since 1984. Twelve field seasons "on the ice" since 1981. Research conducted at Palmer Station, Antarctica, and McMurdo Station, Antarctica.Research areas: Biochemical, cellular, and physiological adaptation to low and high temperatures. Structure and function of cytoplasmic microtubules and microtubule-dependent motors from cold-adapted Antarctic fishes. Regulation of tubulin and globin gene expression in zebrafish and Antarctic fishes. Role of microtubules in morphogenesis of the zebrafish embryo. Developmental hemapoiesis in zebrafish and Antarctic fishes. UV-induced DNA damage and repair in Antarctic marine organisms. Professor, Department of Biology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA