Atnaujinkite slapukų nuostatas

El. knyga: Essentials of Probability & Statistics for Engineers & Scientists: Pearson New International Edition

3.80/5 (67 ratings by Goodreads)
  • Formatas: PDF+DRM
  • Išleidimo metai: 28-Aug-2013
  • Leidėjas: Pearson Education Limited
  • Kalba: eng
  • ISBN-13: 9781292035734
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 28-Aug-2013
  • Leidėjas: Pearson Education Limited
  • Kalba: eng
  • ISBN-13: 9781292035734
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

For junior/senior undergraduates taking a one-semester probability and statistics course as applied to engineering, science, or computer science. This text covers the essential topics needed for a fundamental understanding of basic statistics and its applications in the fields of engineering and the sciences. Interesting, relevant applications use real data from actual studies, showing how the concepts and methods can be used to solve problems in the field. Students using this text should have the equivalent of the completion of one semester of differential and integral calculus.
1. Introduction to Statistics and Probability

1.1 Overview: Statistical Inference, Samples, Populations, and the Role of
Probability

1.2 Sampling Procedures; Collection of Data

1.3 Discrete and Continuous Data.

1.4 Probability: Sample Space and Events

   Exercises

1.5 Counting Sample Points

   Exercises

1.6 Probability of an Event

1.7 Additive Rules

   Exercises

1.8 Conditional Probability, Independence, and the Product Rule

   Exercises

1.9 Bayes' Rule

   Exercises

   Review Exercises

 

2. Random Variables, Distributions, and Expectations

2.1 Concept of a Random Variable

2.2 Discrete Probability Distributions

2.3 Continuous Probability Distributions

   Exercises

2.4 Joint Probability Distributions

   Exercises

2.5 Mean of a Random Variable

   Exercises

2.6 Variance and Covariance of Random Variables.

   Exercises

2.7 Means and Variances of Linear Combinations of Random Variables

   Exercises

   Review Exercises

2.8 Potential Misconceptions and Hazards; Relationship to Material in Other
Chapters

 

3. Some Probability Distributions

3.1 Introduction and Motivation

3.2 Binomial and Multinomial Distributions

   Exercises

3.3 Hypergeometric Distribution

   Exercises

3.4 Negative Binomial and Geometric Distributions

3.5 Poisson Distribution and the Poisson Process

   Exercises

3.6 Continuous Uniform Distribution

3.7 Normal Distribution

3.8 Areas under the Normal Curve

3.9 Applications of the Normal Distribution

   Exercises

3.10 Normal Approximation to the Binomial

   Exercises

3.11 Gamma and Exponential Distributions

3.12 Chi-Squared Distribution.

   Exercises

   Review Exercises

3.13 Potential Misconceptions and Hazards; Relationship to Material in Other
Chapters

 

4. Sampling Distributions and Data Descriptions

4.1 Random Sampling

4.2 Some Important Statistics

   Exercises

4.3 Sampling Distributions

4.4 Sampling Distribution of Means and the Central Limit Theorem

   Exercises

4.5 Sampling Distribution of S2

4.6 t-Distribution

4.7 F-Distribution

4.8 Graphical Presentation

   Exercises

   Review Exercises

4.9 Potential Misconceptions and Hazards; Relationship to Material in Other
Chapters

 

5. One- and Two-Sample Estimation Problems

5.1 Introduction

5.2 Statistical Inference

5.3 Classical Methods of Estimation.

5.4 Single Sample: Estimating the Mean

5.5 Standard Error of a Point Estimate

5.6 Prediction Intervals

5.7 Tolerance Limits

   Exercises

5.8 Two Samples: Estimating the Difference between Two Means

5.9 Paired Observations

   Exercises

5.10 Single Sample: Estimating a Proportion

5.11 Two Samples: Estimating the Difference between Two Proportions

   Exercises

5.12 Single Sample: Estimating the Variance

   Exercises

   Review Exercises

5.13 Potential Misconceptions and Hazards; Relationship to Material in Other
Chapters

 

6. One- and Two-Sample Tests of Hypotheses.

6.1 Statistical Hypotheses: General Concepts

6.2 Testing a Statistical Hypothesis

6.3 The Use of P-Values for Decision Making in Testing Hypotheses

   Exercises

6.4 Single Sample: Tests Concerning a Single Mean

6.5 Two Samples: Tests o