|
|
|
|
3 | (16) |
|
1.1 Binomial coefficients |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.3 Classical Eulerian numbers |
|
|
6 | (3) |
|
|
9 | (1) |
|
1.5 Two important identities |
|
|
10 | (2) |
|
1.6 Exponential generating function |
|
|
12 | (2) |
|
|
14 | (5) |
|
|
19 | (28) |
|
|
19 | (1) |
|
2.2 Pattern-avoiding permutations |
|
|
20 | (3) |
|
|
23 | (3) |
|
|
26 | (8) |
|
2.4.1 Counting all Dyck paths |
|
|
27 | (2) |
|
2.4.2 Counting Dyck paths by peaks |
|
|
29 | (2) |
|
2.4.3 A bijection with 231-avoiding permutations |
|
|
31 | (3) |
|
|
34 | (2) |
|
2.6 Noncrossing partitions |
|
|
36 | (4) |
|
|
40 | (7) |
|
|
47 | (24) |
|
3.1 Basic definitions and terminology |
|
|
47 | (3) |
|
3.2 Labeled posets and P-partitions |
|
|
50 | (4) |
|
3.3 The shard intersection order |
|
|
54 | (3) |
|
3.4 The lattice of noncrossing partitions |
|
|
57 | (4) |
|
3.5 Absolute order and Noncrossing partitions |
|
|
61 | (3) |
|
|
64 | (7) |
|
|
71 | (24) |
|
4.1 The idea of gamma-nonnegativity |
|
|
71 | (1) |
|
4.2 Gamma-nonnegativity for Eulerian numbers |
|
|
72 | (4) |
|
4.3 Gamma-nonnegativity for Narayana numbers |
|
|
76 | (1) |
|
4.4 Palindromicity, unimodality, and the gamma basis |
|
|
77 | (3) |
|
4.5 Computing the gamma vector |
|
|
80 | (1) |
|
4.6 Real roots and log-concavity |
|
|
81 | (3) |
|
4.7 Symmetric boolean decomposition |
|
|
84 | (4) |
|
|
88 | (7) |
|
5 Weak order, hyperplane arrangements, and the Tamari lattice |
|
|
95 | (32) |
|
|
95 | (3) |
|
|
98 | (2) |
|
5.3 The braid arrangement |
|
|
100 | (2) |
|
5.4 Euclidean hyperplane arrangements |
|
|
102 | (3) |
|
5.5 Products of faces and the weak order on chambers |
|
|
105 | (3) |
|
|
108 | (5) |
|
|
113 | (2) |
|
5.8 Rooted planar trees and faces of the associahedron |
|
|
115 | (8) |
|
|
123 | (4) |
|
|
127 | (24) |
|
6.1 The idea of a q-analogue |
|
|
127 | (2) |
|
6.2 Lattice paths by area |
|
|
129 | (3) |
|
6.3 Lattice paths by major index |
|
|
132 | (2) |
|
6.4 Euler-Mahonian distributions |
|
|
134 | (3) |
|
6.5 Descents and major index |
|
|
137 | (2) |
|
|
139 | (1) |
|
|
140 | (3) |
|
|
143 | (6) |
|
|
149 | (2) |
|
7 Cubes, Carries, and an Amazing Matrix: (Supplemental) |
|
|
151 | (12) |
|
|
151 | (3) |
|
|
154 | (2) |
|
|
156 | (7) |
|
Part II Combinatorial topology |
|
|
|
|
163 | (22) |
|
8.1 Abstract simplicial complexes |
|
|
163 | (3) |
|
8.2 Simple convex polytopes |
|
|
166 | (1) |
|
|
167 | (2) |
|
8.4 The order complex of a poset |
|
|
169 | (1) |
|
8.5 Flag simplicial complexes |
|
|
170 | (2) |
|
8.6 Balanced simplicial complexes |
|
|
172 | (1) |
|
|
173 | (2) |
|
|
175 | (2) |
|
8.9 The Dehn-Sommerville relations |
|
|
177 | (4) |
|
|
181 | (4) |
|
9 Barycentric subdivision |
|
|
185 | (18) |
|
9.1 Barycentric subdivision of a finite cell complex |
|
|
185 | (2) |
|
9.2 The barycentric subdivision of a simplex |
|
|
187 | (3) |
|
9.3 Brenti and Welker's transformation |
|
|
190 | (3) |
|
9.4 The h-vector of sd(Δ) and j-Eulerian numbers |
|
|
193 | (3) |
|
9.5 Gamma-nonnegativity of h(sd(Δ)) |
|
|
196 | (4) |
|
9.6 Real roots for barycentric subdivisions |
|
|
200 | (1) |
|
|
201 | (2) |
|
10 Characterizing f-vectors: (Supplemental) |
|
|
203 | (34) |
|
10.1 Compressed simplicial complexes |
|
|
203 | (4) |
|
10.2 Proof of the compression lemma |
|
|
207 | (8) |
|
10.3 Kruskal-Katona-Schutzenberger inequalities |
|
|
215 | (4) |
|
10.4 Frankl-Furedi-Kalai inequalities |
|
|
219 | (4) |
|
10.5 Multicomplexes and M-vectors |
|
|
223 | (2) |
|
10.6 The Stanley-Reisner ring |
|
|
225 | (3) |
|
10.7 The upper bound theorem and the g-theorem |
|
|
228 | (2) |
|
10.8 Conjectures for flag spheres |
|
|
230 | (7) |
|
|
|
|
237 | (36) |
|
|
237 | (6) |
|
11.2 Finite Coxeter groups: generators and relations |
|
|
243 | (3) |
|
11.3 W-Mahonian distribution |
|
|
246 | (1) |
|
|
246 | (4) |
|
11.5 Finite reflection groups and root systems |
|
|
250 | (7) |
|
|
254 | (1) |
|
|
254 | (1) |
|
|
255 | (1) |
|
|
255 | (1) |
|
|
256 | (1) |
|
11.6 The Coxeter arrangement and the Coxeter complex |
|
|
257 | (2) |
|
11.7 Action of W and cosets of parabolic subgroups |
|
|
259 | (3) |
|
11.8 Counting faces in the Coxeter complex |
|
|
262 | (2) |
|
11.9 The W-Euler-Mahonian distribution |
|
|
264 | (2) |
|
|
266 | (3) |
|
11.11 The shard intersection order |
|
|
269 | (2) |
|
|
271 | (2) |
|
|
273 | (20) |
|
12.1 Reflection length and Coxeter elements |
|
|
273 | (3) |
|
12.2 Absolute order and W-noncrossing partitions |
|
|
276 | (1) |
|
12.3 W-Catalan and W-Narayana numbers |
|
|
277 | (3) |
|
12.4 Coxeter-sortable elements |
|
|
280 | (2) |
|
12.5 Root posets and W-nonnesting partitions |
|
|
282 | (5) |
|
|
287 | (3) |
|
|
290 | (3) |
|
13 Combinatorics for Coxeter groups of types Bn and Dn: (Supplemental) |
|
|
293 | (40) |
|
13.1 Type Bn Eulerian numbers |
|
|
293 | (4) |
|
13.2 Type Bn gamma-nonnegativity |
|
|
297 | (4) |
|
13.3 Type Dn Eulerian numbers |
|
|
301 | (2) |
|
13.4 Type Dn gamma-nonnegativity |
|
|
303 | (4) |
|
13.5 Combinatorial models for shard intersections |
|
|
307 | (13) |
|
|
307 | (4) |
|
|
311 | (5) |
|
|
316 | (4) |
|
13.6 Type Bn noncrossing partitions and Narayana numbers |
|
|
320 | (5) |
|
13.7 Gamma-nonnegativity for Cat(Bn; t) |
|
|
325 | (2) |
|
13.8 Type Dn noncrossing partitions and Narayana numbers |
|
|
327 | (3) |
|
13.9 Gamma-nonnegativity for Cat(Dn; t) |
|
|
330 | (3) |
|
14 Affine descents and the Steinberg torus: (Supplemental) |
|
|
333 | (14) |
|
|
333 | (1) |
|
14.2 Faces of the affine Coxeter complex |
|
|
334 | (4) |
|
|
338 | (3) |
|
14.4 Affine Eulerian numbers |
|
|
341 | (6) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
344 | (3) |
References |
|
347 | (12) |
Hints and Solutions |
|
359 | (94) |
Index |
|
453 | |