Atnaujinkite slapukų nuostatas

El. knyga: Evolution Problem in General Relativity

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The global aspects of the problem of evolution equations in general relativity are examined. Central to the work is a revisit of the proof of the global stability of Minkowski space, as presented by Christodoulou and Klainerman (1993). The focus, therefore, is on a new self-contained proof of the main part of that result which concerns the full solution of the radiation problem in vacuum for arbitrary asymptotic flat initial data sets. While technical motivation is clearly and systematically provided for this proof, many important related concepts and results, some well established, others new, unfold along the way.
A comprehensive bibliography and index complete this important monograph, aimed at researchers and graduate students in mathematics, mathematical physics, and physics in the area of general relativity.

The global aspects of the problem of evolution equations in general relativity are examined. Central to the work is a revisit of the proof of the global stability of Minkowski space, as presented by Christodoulou and Klainerman (1993). The focus, therefore, is on a new self-contained proof of the main part of that result which concerns the full solution of the radiation problem in vacuum for arbitrary asymptotic flat initial data sets. This important monograph is aimed at researchers and graduate students in mathematics, mathematical physics, and physics working in the area of general relativity.

This monograph examines the global aspects of the problem of evolution equations in general relativity. Central to the work is a revisit of the proof of the global stability of Minkowski space, as presented by Christodoulou and Klainerman (1993). This book focuses on a new self-contained proof of the main part of that result which concerns the full solution of the radiation problem in vacuum for arbitrary asymptotic flat initial data sets. While technical motivation is clearly and systematically provided for this proof, many important related concepts and results, some well established, others new, unfold along the way. A comprehensive bibliography and index complete this important monograph, aimed at researchers and graduate students in mathematics, mathematical physics, and physics working in the area of general relativity.

Recenzijos

"The book . . . gives a new proof of the central part of the theorem of Christodoulou and S. Klainerman, The global nonlinear stability of the Minkowski space . . . The authors prove, working in terms of double null foliations, a nonlinear stability, or global existence for small data, result for exterior domains."



Mathematical Reviews



"...Important results in this book are presented in a more digestible form [ than] in the preceding book [ The global nonlinear stability of the Minkowski space] and thus scientists and graduate students working in relativity are recommended to read at least the introduction and the conclusions."



Applications Of Mathematics



"...This important monograph, presenting the detailed proof of an important result in general relativity, is of great interest to researchers and graduate students in mathematics, mathematical physics, and physics in the area of general relativity."



Studia Universitatis Babes-Bolyai, Series Mathematica



"The main purpose of this book is to revisit the global stability of Minkowski space as set out by D. Chrostodoulou and S. Klainerman (1993). Here the authors provide a new self-contained proof of the main part of that result, which concerns the full solution of the radiation problem in vacuum, for arbitrary asymptotically flat initial data sets."



BookNews 

1 Introduction.- 1.1 Generalities about Lorentz manifolds.- 1.2 The
Einstein equations.- 1.3 Local existence for Einsteins vacuum equations.-
1.4 Appendix.- 2 Analytic Methods in the Study of the Initial Value Problem.-
2.1 Local and global existence for systems of nonlinear wave equations.- 2.2
Weyl fields and Bianchi equations in Minkowski spacetime.- 2.3 Global
nonlinear stability of Minkowski spacetime.- 2.4 Structure of the work.- 3
Definitions and Results.- 3.1 Connection coefficients.- 3.2 Bianchi equations
in an Einstein vacuum spacetime.- 3.3 Canonical double null foliation of the
spacetime.- 3.4 Deformation tensors.- 3.5 The definitions of the fundamental
norms.- 3.6 The initial data.- 3.7 The Main Theorem.- 4 Estimates for the
Connection Coefficients.- 4.1 Preliminary results.- 4.2 Proof of Theorem Ml.-
4.3 Proof of Theorem 4.2.1 and estimates for the zero and first derivatives
of the connection coefficents.- 4.4 Proof of Theorem 4.2.2 and estimates for
the second derivatives of the connection coefficients.- 4.5 Proof of Theorem
4.2.3 and control of third derivatives of the connection coefficients.- 4.6
Rotation tensor estimates.- 4.7 Proof of Theorem M2 and estimates for the D
norms of the rotation deformation tensors.- 4.8 Appendix.- 5 Estimates for
the Riemann Curvature Tensor.- 5.1 Preliminary tools.- 5.2 Appendix.- 6 The
Error Estimates.- 6.1 Definitions and prerequisites.- 6.3 The error terms
?2.- 6.4 Appendix.- 7 The Initial Hypersurface and the Last Slice.- 7.1
Initial hypersurface foliations.- 7.2 The initial hypersurface connection
estimates.- 7.3 The last slice foliation.- 7.4 The last slice connection
estimates.- 7.5 The last slice rotation deformation estimates.- 7.6 The
extension argument.- 7.7 Appendix.- 8 Conclusions.- 8.1 The spacetimenull
infinity.- 8.2 The behavior of the curvature tensor at the null-outgoing
infinity.- 8.3 The behavior of the connection coefficients at the
null-outgoing infinity..- 8.4 The null-outgoing infinity limit of the
structure equations.- 8.5 The Bondi mass.- 8.6 Asymptotic behavior of
null-outgoing hypersurfaces.- Reference.