Atnaujinkite slapukų nuostatas

El. knyga: Evolutionary Multi-Criterion Optimization: 12th International Conference, EMO 2023, Leiden, The Netherlands, March 20-24, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13970
  • Išleidimo metai: 09-Mar-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031272509
  • Formatas: EPUB+DRM
  • Serija: Lecture Notes in Computer Science 13970
  • Išleidimo metai: 09-Mar-2023
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783031272509

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book constitutes the refereed proceedings of the 12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2022 held in Leiden, The Netherlands, during March 20-24, 2023.







The 44 regular papers presented in this book were carefully reviewed and selected from 65 submissions.





The papers are divided into the following topical sections: Algorithm Design and Engineering; Machine Learning and Multi-criterion Optimization; Benchmarking and Performance Assessment; Indicator Design and Complexity Analysis; Applications in Real World Domains; and Multi-Criteria Decision Making and Interactive Algorithms..
Algorithm Design and Engineering.- Visual Exploration of the Effect of
Constraint Handling in Multiobjective Optimization.- A Two-stage Algorithm
for Integer Multiobjective Simulation Optimization.- RegEMO: Sacrificing
Pareto-Optimality for Regularity in Multi-objective
Problem-Solving.- Cooperative coevolutionary NSGA-II with Linkage Measurement
Minimization for Large-scale Multi-objective Optimization.- Data-Driven
Evolutionary Multi-Objective Optimization Based on Multiple-Gradient Descent
for Disconnected Pareto Fronts.- Eliminating Non-dominated Sorting from
NSGA-III.- Scalability of Multi-Objective Evolutionary Algorithms for Solving
Real-World Complex Optimization Problems.- Machine Learning and
Multi-criterion Optimization.- Multi-Objective Learning using HV
Maximization.- Sparse Adversarial Attack via Bi-Objective
Optimization.- Investigating Innovized Progress Operators with Different
Machine Learning Methods.- End-to-End Pareto Set Prediction with Graph Neural
Networks for Multi-objective Facility Location.- Online Learning
Hyper-Heuristics in Multi-Objective Evolutionary
Algorithms.- Surrogate-assisted Multi-objective Optimization via Genetic
Programming based Symbolic Regression.- Learning to Predict Pareto-optimal
Solutions From Pseudo-weights.- A Relation Surrogate Model for Expensive
Multiobjective Continuous and Combinatorial Optimization.- Pareto Front
Upconvert by Iterative Estimation Modeling and Solution Sampling.- Pareto
Front Upconvert by Iterative Estimation Modeling and Solution
Sampling.- Approximation of a Pareto Set Segment Using a Linear Model with
Sharing Variables.- Feature-based Benchmarking of Distance-based
Multi/Many-objective Optimisation Problems: A Machine Learning
Perspective.- Benchmarking and Performance Assessment.- Partially Degenerate
Multi-Objective Test Problems.- Peak-A-Boo! GeneratingMulti-Objective
Multiple Peaks Benchmark Problems with Precise Pareto Sets.- MACO: A
Real-world inspired Benchmark for Multi-objective Evolutionary Algorithms.- A
scalable test suite for bi-objective multidisciplinary
optimisation.- Performance Evaluation of Multi-Objective Evolutionary
Algorithms using Artificial and Real-World Problems.- A Novel Performance
Indicator based on the Linear Assignment Problem.- A Test Suite for
Multi-objective Multi-fidelity Optimization.- Indicator Design and Complexity
Analysis.- Diversity enhancement via magnitude.- Two-Stage Greedy
Approximated Hypervolume Subset Selection for Large-Scale
Problems.- Two-Stage Greedy Approximated Hypervolume Subset Selection for
Large-Scale Problems.- On the Computational Complexity of Efficient
Non-Dominated Sort using Binary Search.- Applications in Real World
Domains.- Evolutionary Algorithms with Machine Learning Models for
Multiobjective Optimization in Epidemics Control.- Joint Price Optimization
across a Portfolio of Fashion E-commerce Products.- Improving MOEA/D with
Knowledge Discovery. Application to a Bi-Objective Routing Problem.- The
Prism-Net Search Space Representation for Multi-Objective Building Spatial
Design.- Selection Strategies for a Balanced Multi- or Many-Objective
Molecular Optimization and Genetic Diversity: a Comparative Study.- A
Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific
Differentially Co-expressed and Functionally Enriched Gene Modules.- A
Multi-objective Evolutionary Framework for Identifying Dengue Stage-Specific
Differentially Co-expressed and Functionally Enriched Gene Modules.
-Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade
Movements Prediction.- Transfer of Multi-Objectively Tuned CMA-ES Parameters
to a Vehicle Dynamics Problem.- Multi-Criteria Decision Making and
Interactive Algorithms.- Preference-Based Nonlinear Normalization for
Multiobjective Optimization.- Incorporating preference information
interactively in NSGA-III by the adaptation of reference vectors.- A
Systematic Way of Structuring Real-World Multiobjective Optimization
Problems.- IK-EMOViz: An Interactive Knowledge-based Evolutionary
Multi-objective Optimization Framework.- An Interactive Decision Tree-Based
Evolutionary Multi-Objective Algorithm.