Preface |
|
xvii | |
1 Introduction |
|
1 | (18) |
|
1.1 Main Features of (2 + 1) Gravity |
|
|
1 | (6) |
|
1.1.1 Field Equations and Curvature Tensors |
|
|
2 | (1) |
|
1.1.2 Matter Distribution Locally Curves the Spacetime |
|
|
2 | (1) |
|
1.1.3 Point Particles Produce Global Effects on the Spacetime |
|
|
3 | (1) |
|
|
3 | (2) |
|
1.1.5 No Geodesic Deviation for Dust |
|
|
5 | (1) |
|
1.1.6 No Dynamic Degrees of Freedom |
|
|
6 | (1) |
|
1.1.7 Black Holes in (2 + 1) Gravity |
|
|
7 | (1) |
|
1.1.8 Gravity in the Presence of Other Fields and Matter |
|
|
7 | (1) |
|
1.2 Algebraic Classification |
|
|
7 | (4) |
|
1.2.1 Classification of the Cotton-York Tensor |
|
|
7 | (2) |
|
1.2.2 Classification of the Energy-Momentum Tensor |
|
|
9 | (2) |
|
1.2.3 Classification of the Traceless Ricci Tensor |
|
|
11 | (1) |
|
1.3 Brown-York Energy, Mass, and Momentum for Stationary Metrics |
|
|
11 | (4) |
|
1.3.1 Summary of Quasilocal Mass, Energy, and Angular Momentum |
|
|
14 | (1) |
|
1.4 Decomposition with Respect to a Frame of Reference |
|
|
15 | (4) |
|
1.4.1 Kinematics of the Frame |
|
|
15 | (1) |
|
1.4.2 Perfect Fluid Referred to a Frame of Reference |
|
|
16 | (3) |
2 Point Particle Solutions |
|
19 | (8) |
|
2.1 Staruszkiewicz Point Source Solutions |
|
|
19 | (2) |
|
2.1.1 Relationship Between the Deficit Angle and Mass |
|
|
20 | (1) |
|
2.2 Staruszkiewicz Single Point Source Solution |
|
|
21 | (1) |
|
2.2.1 No Parallelism With the (3 + 1) Schwarzschild Solution |
|
|
22 | (1) |
|
2.3 Staruszkiewicz Two Point Sources Solution |
|
|
22 | (1) |
|
2.4 Deser-Jakiw-'t Hooft Static N Point Sources Solution |
|
|
23 | (1) |
|
2.4.1 Energy and Euler Invariant |
|
|
23 | (1) |
|
2.4.2 Energy-Momentum Tensor for N Point Particles |
|
|
24 | (1) |
|
2.5 Clement Rotating Point-Particles Solution |
|
|
24 | (3) |
3 Dust Solutions |
|
27 | (17) |
|
3.1 Cornish-Frankel Dust Heaviside Function Solution |
|
|
27 | (1) |
|
3.2 Giddings-Abott-Kuchar Dust Solutions |
|
|
28 | (2) |
|
3.2.1 Time-Dependent Class of Dust Solutions Omega = ln (t f (x, y)) |
|
|
29 | (1) |
|
3.2.2 Static Class of Dust Solutions Omega = ln g(x, y) |
|
|
30 | (1) |
|
3.3 Barrow-Shaw-Tsagas Anisotropic Dust Solution; Lambda = 0 |
|
|
30 | (3) |
|
3.4 BST Diagonal Anisotropic Dust Solutions with Lambda |
|
|
33 | (1) |
|
3.5 BST (t, x, y)-Dependent Cosmological Solutions with Comoving Dust |
|
|
34 | (6) |
|
3.5.1 BST Class 2 of Solutions |
|
|
37 | (1) |
|
3.5.2 BST Class 1 Spacetime |
|
|
38 | (1) |
|
3.5.3 BST Class 3 of Dust Solutions |
|
|
39 | (1) |
|
3.6 Rooman-Spindel Dust Godel Non-Diagonal Model |
|
|
40 | (4) |
4 A Shortcut to (2+1) Cyclic Symmetric Stationary Solutions |
|
44 | (14) |
|
4.1 Cyclic Symmetric Stationary Solutions in Canonical Coordinates |
|
|
44 | (4) |
|
4.1.1 Banados-Teitelboim-Zanelli Solution in Canonical Polar rho Coordinate |
|
|
45 | (1) |
|
4.1.2 BTZ Solution Counterpart |
|
|
46 | (1) |
|
4.1.3 Coussaert-Henneaux Metrics |
|
|
47 | (1) |
|
4.2 Static AdS Black Hole |
|
|
48 | (4) |
|
4.2.1 Static BTZ Solution |
|
|
49 | (2) |
|
4.2.2 Static AdS Solution Counterpart |
|
|
51 | (1) |
|
4.3 Symmetries of the Stationary and Static Cyclic Symmetric BTZ Metrics |
|
|
52 | (6) |
|
4.3.1 Symmetries of the AdS Metric for Negative M, M = -alpha2 |
|
|
56 | (2) |
5 Perfect Fluid Static Stars; Cosmological Solutions |
|
58 | (8) |
|
5.1 Static Circularly Symmetric Fluid Solutions |
|
|
58 | (1) |
|
5.1.1 Cotton Tensor Types |
|
|
59 | (1) |
|
5.2 Incompressible Static Star |
|
|
59 | (3) |
|
5.2.1 Collas Static Star with Constant Density mu0 |
|
|
60 | (1) |
|
5.2.2 Giddings-Abott-Kuchat Static Star with mu0 |
|
|
60 | (1) |
|
5.2.3 Cornish-Frankel Static Star with mu0 |
|
|
61 | (1) |
|
5.3 Cornish-Frankel Static Polytropic Solutions |
|
|
62 | (4) |
|
5.3.1 Static Star with a Stiff Matter p(r) = mu(r) |
|
|
64 | (1) |
|
5.3.2 Static Star with Pure Radiation p = mu(r)/2 |
|
|
65 | (1) |
6 Static Perfect Fluid Stars with A |
|
66 | (14) |
|
6.1 Equations for a (2+1) Static Perfect Fluid Metric |
|
|
67 | (2) |
|
6.1.1 General Perfect Fluid Solution with Variable rho(r) |
|
|
68 | (1) |
|
6.2 Canonical Coordinate System {t, N, 0} |
|
|
69 | (1) |
|
6.3 Perfect Fluid Solutions for a Barotropic Law p = gamma rho |
|
|
70 | (1) |
|
6.4 Perfect Fluid Solutions for a Polytropic Law p = Cpgamma |
|
|
71 | (2) |
|
6.5 Oppenheimer-Volkoff Equation |
|
|
73 | (1) |
|
6.6 Perfect Fluid Solution with Constant Density |
|
|
74 | (6) |
|
6.6.1 (3+1) Static Spherically Symmetric Perfect Fluid Solution |
|
|
76 | (2) |
|
|
78 | (2) |
7 Hydrodynamic Equilibrium |
|
80 | (12) |
|
7.1 Generalized Buchdahl's Theorem |
|
|
80 | (1) |
|
7.2 Stellar Equilibrium in (2 + 1) Dimensions with Λ |
|
|
81 | (4) |
|
7.2.1 Cruz-Zanelli Existence of Hydrostatic Equilibrium for Lambda < or = to 0 |
|
|
83 | (1) |
|
7.2.2 No Buchdahl's Inequality in (2 + 1) Hydrostatics |
|
|
83 | (1) |
|
7.2.3 Static Star with Constant Density mu0 and Lambda = -1/l2 < or = to 0 |
|
|
84 | (1) |
|
7.3 Buchdahl Theorem in d Dimensions |
|
|
85 | (7) |
|
7.3.1 Buchdahl's Inequalities |
|
|
86 | (3) |
|
7.3.2 Constant Density Solution |
|
|
89 | (3) |
8 Stationary Circularly Symmetric Perfect Fluids with A |
|
92 | (16) |
|
8.1 Stationary Differentially Rotating Perfect Fluids |
|
|
93 | (1) |
|
8.2 Garcia Stationary Rigidly Rotating Perfect Fluids |
|
|
94 | (8) |
|
8.2.1 Rigidly Rotating Perfect Fluid Solution with W(r) = J/(2r2) |
|
|
96 | (1) |
|
8.2.2 Garcia Interior Solution with Constant Energy Density |
|
|
97 | (3) |
|
8.2.3 Interior Perfect Fluid Solution to the BTZ Black Hole |
|
|
100 | (1) |
|
8.2.4 Alternative Parametrization |
|
|
100 | (2) |
|
8.2.5 Barotropic Rotating Perfect Fluids Without Lambda |
|
|
102 | (1) |
|
8.3 Lubo-Rooman-Spindel Rotating Perfect Fluids |
|
|
102 | (6) |
|
8.3.1 Equations for Rigidly Rotating Fluids |
|
|
104 | (1) |
|
8.3.2 Garcia Representation of Stationary Perfect Fluid Solutions |
|
|
105 | (1) |
|
8.3.3 Barotropic Class of Solutions p = gamma mu it |
|
|
105 | (1) |
|
8.3.4 Constant Density Stationary Solution; p = p(r), mu = mu0 |
|
|
105 | (1) |
|
8.3.5 Lubo-Rooman-Spindel Perfect Fluids u = theta° and grr = 1 |
|
|
106 | (1) |
|
8.3.6 LBR Rotating Perfect Fluid with mu0 |
|
|
106 | (1) |
|
8.3.7 Rooman-Spindel Rotating Fluid Model; gtt = -1 = -grr |
|
|
107 | (1) |
9 Friedmann-Robertson-Walker Cosmologies |
|
108 | (13) |
|
9.1 Einstein Equations for FRW Cosmologies |
|
|
108 | (2) |
|
9.1.1 Einstein Equations for (3+1) FRW Cosmology |
|
|
108 | (1) |
|
9.1.2 Einstein Equations for (2+1) FRW Cosmology |
|
|
109 | (1) |
|
9.2 Barotropic Perfect Fluid FRW Solutions |
|
|
110 | (3) |
|
9.2.1 Barotropic Perfect Fluid (3 + 1) Solutions |
|
|
110 | (1) |
|
9.2.2 Barotropic Perfect Fluid (2 + 1) Solutions |
|
|
111 | (1) |
|
9.2.3 Comparison Between (3+1) and (2+1) Barotropic Solutions |
|
|
112 | (1) |
|
9.3 Polytropic Perfect Fluid FRW Solutions |
|
|
113 | (1) |
|
9.3.1 Polytropic Perfect Fluid (3 + 1) Solutions |
|
|
113 | (1) |
|
9.3.2 Polytropic Perfect Fluid (2 + 1) Solutions |
|
|
114 | (1) |
|
9.3.3 Comparison Between (3+1) and (2+1) Polytropic Solutions |
|
|
114 | (1) |
|
9.4 Mann-Ross Collapsing Dust FRW Solutions with Lambda |
|
|
114 | (7) |
|
9.4.1 Cosmological dS-FRW Solution |
|
|
115 | (1) |
|
9.4.2 Asymptotically AdS-FRW Dust Solution |
|
|
115 | (1) |
|
9.4.3 Matching the AdS-FRW Dust to the Static BTZ |
|
|
116 | (1) |
|
9.4.4 Determination of Kij |
|
|
117 | (2) |
|
9.4.5 Gidding-Abbott-Kuchar Dust FRW Solution |
|
|
119 | (2) |
10 Dilaton-Inflaton Friedmann-Robertson-Walker Cosmologies |
|
121 | (21) |
|
10.1 Equations for a FRW Cosmology with a Perfect Fluid and a Scalar Field |
|
|
122 | (5) |
|
10.1.1 Einstein Equations for (3+1) FRW Dilaton Cosmology |
|
|
122 | (1) |
|
10.1.2 Einstein Equations for (2+1) FRW Cosmology |
|
|
123 | (2) |
|
10.1.3 Correspondence Between (3+1) and (2+1) Solutions |
|
|
125 | (2) |
|
10.2 Single Scalar Field to Linear State Equations; Lambda = 0 |
|
|
127 | (4) |
|
10.2.1 (2+1) Solutions for a Scalar Field |
|
|
127 | (1) |
|
10.2.2 (3+1) Solutions for a Scalar Field |
|
|
128 | (1) |
|
10.2.3 Slow Roll Spatially Flat FRW Solutions |
|
|
129 | (2) |
|
10.3 Spatially Flat FRW Solutions for Barotropic Perfect Fluid and Scalar Field |
|
|
131 | (4) |
|
10.3.1 Spatially Flat FRW (3+1) Solutions; gamma4 not = to 2Gamma4 |
|
|
131 | (2) |
|
10.3.2 Spatially Flat FRW (2+1) Solutions; gamma3 not = 2Gamma3 |
|
|
133 | (1) |
|
10.3.3 Barrow-Saich Solution; gamma = 2Gamma |
|
|
134 | (1) |
|
10.4 Single Scalar Field Spatially Flat FRW Solutions to pφ + rhoφ=Gamma&rho&phiBeta |
|
|
135 | (4) |
|
10.4.1 Spatially Flat (3+1) Solutions with V(phi) = A(alphaphi2/1=beta)-phi2beta/(1-beta)) |
|
|
135 | (1) |
|
10.4.2 Spatially Flat (2+1) Solutions with V(phi) = A(alphaphi2/1=beta)-phi2beta/(1-beta)) |
|
|
136 | (1) |
|
10.4.3 Barrow-Burd-Lancaster (2+1) and Madsen (3+1) Solutions |
|
|
137 | (2) |
|
10.5 Scalar Field Solutions for a Given Scale Factor |
|
|
139 | (3) |
|
10.5.1 Second (2+1) BBL Solution |
|
|
139 | (2) |
|
10.5.2 (3+1) Generalization of the Second (2+1) BBL Solution |
|
|
141 | (1) |
11 Einstein-Maxwell Solutions |
|
142 | (98) |
|
11.1 Stationary Cyclic Symmetric Einstein-Maxwell Fields |
|
|
143 | (10) |
|
11.1.1 Stationary Cyclic Symmetric Maxwell Fields |
|
|
143 | (2) |
|
11.1.2 General Stationary Metric and Einstein Equations |
|
|
145 | (3) |
|
11.1.3 Complex Extension and Real Cuts |
|
|
148 | (1) |
|
11.1.4 Positive A Solutions |
|
|
149 | (1) |
|
11.1.5 Characterizations of Einstein-Maxwell Solutions |
|
|
149 | (3) |
|
11.1.6 Static Cyclic Symmetric Equations for Maxwell Fields |
|
|
152 | (1) |
|
11.2 Electrostatic Solutions; b not = to 0, a = 0 |
|
|
153 | (6) |
|
11.2.1 General Electrostatic Solutions |
|
|
154 | (1) |
|
11.2.2 Gott-Simon-Alpern, Deser-Mazur, and Melvin Electrostatic Solution |
|
|
155 | (1) |
|
11.2.3 Charged Static Peldan Solution with Lambda |
|
|
156 | (3) |
|
11.3 Magnetostatic Solutions; a not = to 0, b = 0 |
|
|
159 | (9) |
|
11.3.1 General Magnetostatic Solutions |
|
|
160 | (1) |
|
11.3.2 Melvin, and Barrow-Burd-Lancaster Magnetostatic Solution |
|
|
161 | (1) |
|
11.3.3 Peldan Magnetostatic Solution with Lambda |
|
|
162 | (3) |
|
11.3.4 Hirschmann-Welch Solution with Lambda |
|
|
165 | (3) |
|
11.4 Cataldo Static Hybrid Solution |
|
|
168 | (5) |
|
|
170 | (1) |
|
11.4.2 Field, Energy-Momentum, and Cotton Tensors |
|
|
171 | (2) |
|
11.5 Uniform Electromagnetic Solutions Fmunu;sigma = 0 |
|
|
173 | (7) |
|
11.5.1 General Uniform Electromagnetic Solution for a not = to 0, not = to b |
|
|
173 | (2) |
|
11.5.2 Uniform "Stationary" Electromagnetic A = r/(bl2)(dt - wodphi) Solutions |
|
|
175 | (1) |
|
11.5.3 Matyjasek-Zaslayskii Uniform Electrostatic A = r/(bl2) dt Solution |
|
|
176 | (3) |
|
11.5.4 Uniform "Stationary" Electromagnetic A = r/(al2)(dphi+W0dt) Solutions |
|
|
179 | (1) |
|
11.5.5 No Uniform Stationary Magnetostatic Solution for Lambda = -1/l2 |
|
|
180 | (1) |
|
11.6 Constant Electromagnetic Invariants' Solutions |
|
|
180 | (11) |
|
11.6.1 General Constant Invariant FmunuFmunu=2gamma for a not = to 0 not = to b |
|
|
181 | (1) |
|
11.6.2 Constant Electromagnetic Invariant FF = 2/l2 Solution |
|
|
182 | (1) |
|
11.6.3 Constant Electromagnetic Invariant FF = -2/l2 Solution for b not - to 0 |
|
|
182 | (1) |
|
11.6.4 Constant Electromagnetic Invariant FF = 2/l2 Stationary Solution for a not = to 0 |
|
|
183 | (1) |
|
11.6.5 Vanishing Electromagnetic Invariant FF = 0 Solution |
|
|
184 | (1) |
|
11.6.6 Kamata-Koikawa Solution |
|
|
185 | (4) |
|
11.6.7 Proper Kamata-Koikawa Solution, ro0 = ±Q/square root of Lambda |
|
|
189 | (2) |
|
11.7 Ayon-Cataldo-Garcia Stationary Hybrid Solution |
|
|
191 | (8) |
|
11.7.1 ACG Hybrid Solution Allowing for BTZ Limit |
|
|
192 | (2) |
|
11.7.2 Mass, Energy, and Momentum |
|
|
194 | (4) |
|
11.7.3 Constant Electromagnetic Invariants' Hybrid Solution for Lambda = 0 |
|
|
198 | (1) |
|
11.8 Stationary Solutions for a not = to 0 or b not = to 0 |
|
|
199 | (5) |
|
11.8.1 Stationary Magneto-Electric Solution for a not = to 0 = b |
|
|
199 | (3) |
|
11.8.2 Stationary Electromagnetic Solution for b not = to 0 = a |
|
|
202 | (2) |
|
11.9 Garcia Stationary Solutions for a = 0 and b no = to 0 |
|
|
204 | (11) |
|
11.9.1 Alternative Representation of the Einstein Equations |
|
|
205 | (1) |
|
11.9.2 Garcia Stationary Electromagnetic Solution with BTZ limit |
|
|
206 | (7) |
|
11.9.3 Garcia Stationary Solution with BTZ-Counterpart Limit |
|
|
213 | (2) |
|
11.10 Generating Solutions via SL(2, R)-Transformations |
|
|
215 | (2) |
|
11.11 Transformed Electrostatic b not = to 0 Solutions |
|
|
217 | (11) |
|
11.11.1 Stationary Electromagnetic Solution |
|
|
218 | (1) |
|
11.11.2 Clement Spinning Solution |
|
|
219 | (5) |
|
11.11.3 Martinez-Teitelboim-Zanelli Solution |
|
|
224 | (4) |
|
11.12 Transformed Magnetostatic a not = to 0 Solutions |
|
|
228 | (7) |
|
11.12.1 Stationary Magneto-Electric Solution |
|
|
229 | (1) |
|
11.12.2 Dias-Lemos Magnetic BTZ-Solution Counterpart |
|
|
229 | (6) |
|
11.13 Transformed Cataldo Hybrid Static Solution |
|
|
235 | (3) |
|
11.13.1 Mass, Energy and Momentum |
|
|
237 | (1) |
|
11.14 Summary on Electromagnetic Maxwell Solutions |
|
|
238 | (2) |
12 Black Holes Coupled To Nonlinear Electrodynamics |
|
240 | (17) |
|
12.1 Nonlinear Electrodynamics in (2+1) Dimensions |
|
|
241 | (1) |
|
12.2 General Nonlinear Electrostatic Solution |
|
|
242 | (2) |
|
12.2.1 Static Charged Peldan Solution |
|
|
244 | (1) |
|
12.3 Cataldo-Garcia Nonlinear EBI Charged Black Hole |
|
|
244 | (5) |
|
12.3.1 Static Cyclic Symmetric EBI Solution |
|
|
246 | (1) |
|
12.3.2 Cataldo-Garcia Black Hole to EBI |
|
|
247 | (2) |
|
12.4 Regular Black Hole Solution |
|
|
249 | (3) |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
252 | (1) |
|
12.5 Coulomb-Like Black Hole Solution |
|
|
252 | (4) |
|
12.5.1 Horizons for the Coulomb-Like Solution |
|
|
254 | (2) |
|
12.6 Stationary Nonlinear Electrodynamics Black Holes |
|
|
256 | (1) |
13 Dilaton Field Minimally Coupled to (2 + 1) Gravity |
|
257 | (29) |
|
13.1 Scalar Field Minimally Coupled to Einstein Gravity |
|
|
257 | (1) |
|
13.2 Static Black Hole Coupled to a Scalar Psi(r) = k ln(r) |
|
|
258 | (5) |
|
13.2.1 Quasi Local Momentum, Energy, and Mass |
|
|
261 | (1) |
|
13.2.2 Classification of the Energy-Momentum and Cotton Tensors |
|
|
262 | (1) |
|
13.3 General Static Chan-Mann Solution |
|
|
263 | (3) |
|
13.3.1 Regular F(r)+ Function for the Metric g+ |
|
|
264 | (1) |
|
13.3.2 Chan-Mann Solution |
|
|
265 | (1) |
|
13.4 Stationary Solution Coupled to Psi(r) = k ln(r) |
|
|
266 | (4) |
|
13.4.1 Momentum, Energy, and Maas for a Rotating Dilaton |
|
|
268 | (1) |
|
13.4.2 Classification of the Energy-Momentum and Cotton Tensors |
|
|
269 | (1) |
|
13.5 Stationary Dilaton Solutions Generated via SL(2, R) Transformations |
|
|
270 | (4) |
|
13.5.1 Sub-Class of Rotating Dilaton Black Holes |
|
|
272 | (1) |
|
13.5.2 Rotating Chan-Mann Dilaton Black Hole |
|
|
273 | (1) |
|
13.6 Dilaton Coupled to Einstein-Maxwell Fields |
|
|
274 | (1) |
|
13.6.1 Einstein-Maxwell-Scalar Field Equations |
|
|
274 | (1) |
|
13.7 Static Charged Solution Coupled to Psi(r) = k ln(r) |
|
|
275 | (4) |
|
13.7.1 Quasi-Local Mass, Momentum, Energy for Charged Dilaton |
|
|
277 | (1) |
|
13.7.2 Algebraic Classification of the Field, Energy-Momentum, and Cotton Tensors |
|
|
277 | (2) |
|
13.8 Stationary Charged Dilaton Generated via SL(2, R) |
|
|
279 | (5) |
|
13.8.1 Quasi-Local Mass and Momentum |
|
|
280 | (2) |
|
13.8.2 Algebraic Classification of the Field, Energy-Momentum, and Cotton Tensors |
|
|
282 | (2) |
|
13.8.3 Particular Stationary Charged Dilaton via SL(2, R) Transformation |
|
|
284 | (1) |
|
13.9 Summary of Dilaton Minimally Coupled to Gravity |
|
|
284 | (2) |
14 Scalar Field Non-Minimally Coupled to (2+1) Gravity |
|
286 | (6) |
|
14.1 Einstein Equations for Non-Minimally Coupled Scalar Field |
|
|
286 | (1) |
|
14.1.1 Martinez-Zanelli Black Hole Solution with Tmuto the mu = 0 |
|
|
287 | (1) |
|
14.2 Stationary Black Hole for a Non-Minimally Coupled Scalar Field |
|
|
287 | (5) |
|
14.2.1 Quasi-Local Momentum, Energy, and Mass |
|
|
288 | (1) |
|
14.2.2 Algebraic Classification of the Ricci, Energy-Momentum, and Cotton Tensors |
|
|
289 | (3) |
15 Low-Energy (2+1) String Gravity |
|
292 | (11) |
|
15.1 n-Dimensional Heterotic String Dynamical Equations |
|
|
292 | (3) |
|
|
292 | (1) |
|
|
293 | (2) |
|
15.2 Dynamical Equations in (2+1) String Gravity |
|
|
295 | (1) |
|
15.3 Horne-Horowitz Black String |
|
|
296 | (2) |
|
15.4 Horowitz-Welch Black String |
|
|
298 | (2) |
|
15.5 Chan-Mann String Solution |
|
|
300 | (3) |
|
15.5.1 Einstein-Maxwell-Scalar Field Equations |
|
|
300 | (1) |
|
15.5.2 Static and Stationary Black String Solutions |
|
|
301 | (2) |
16 Topologically Massive Gravity |
|
303 | (4) |
|
16.1 Chern-Simons Action and Field Equations of TMG |
|
|
304 | (1) |
|
16.2 Exact Vacuum Solutions of TMG with Lambda |
|
|
305 | (2) |
17 Bianchi-Type (BT) Spacetimes in TMG; Petrov Type D |
|
307 | (26) |
|
17.1 Generalities on Bianchi-Type (BT) 3D Spaces |
|
|
307 | (2) |
|
17.2 Nutku-Baekler-Ortiz "Timelike" BT VIII Spacetime |
|
|
309 | (2) |
|
17.2.1 Nutku Timelike Biaxially Squashed Metric |
|
|
310 | (1) |
|
17.3 Nutku-Baekler-Ortiz "Spacelike" Squashed BT VIII Spacetime |
|
|
311 | (3) |
|
17.3.1 Spacelike Biaxially Squashed Metric; Nutku Solution Counterpart |
|
|
313 | (1) |
|
17.4 Nutku-Baekler-Ortiz Solutions of Bianchi Type III |
|
|
314 | (3) |
|
17.4.1 Nutku-Baekler-Ortiz BT III Timelike Solution with Lambda = 0 |
|
|
315 | (1) |
|
17.4.2 Nutku-Baekler-Ortiz BT III Spacelike Solution with Lambda = 0 |
|
|
316 | (1) |
|
17.5 Timelike Biaxially Squashed Metrics |
|
|
317 | (10) |
|
17.5.1 Representation of the Vacuum Biaxially Squashed Solutions |
|
|
317 | (2) |
|
17.5.2 Eigenvectors of the Cotton Tensor; Triad Formulation |
|
|
319 | (1) |
|
17.5.3 Complex Extension Toward the Spacelike Squashed Metric |
|
|
320 | (1) |
|
17.5.4 Alternative Metric Representation of ds2sl |
|
|
321 | (6) |
|
17.6 Spacelike Biaxially Squashed Metrics |
|
|
327 | (6) |
|
17.6.1 Eigenvectors of the Cotton Tensor; Triad Formulation |
|
|
328 | (1) |
|
17.6.2 Alternative Metric Representation of ds2sl |
|
|
329 | (4) |
18 Petrov Type N Wave Metrics |
|
333 | (12) |
|
18.1 Brinkmann-Like 3D Metric |
|
|
333 | (1) |
|
18.2 AdS3 Non-Covariantly Constant TN-Waves |
|
|
334 | (6) |
|
18.2.1 AdS3 TN-Waves with Lambda not = to 0 |
|
|
336 | (1) |
|
18.2.2 Nutku TN-Wave Solution |
|
|
336 | (1) |
|
18.2.3 Clement TN-Wave Solution |
|
|
337 | (1) |
|
18.2.4 Ayon-HassaIne TN-Wave Solution |
|
|
337 | (1) |
|
18.2.5 Olmez-Sarioglu-Tekin TN-Wave Solution |
|
|
338 | (1) |
|
18.2.6 Dereli-Sarioglu TN-Wave Solution |
|
|
338 | (1) |
|
18.2.7 Carlip-Deser-Waldron-Wise TN-Wave Solution |
|
|
338 | (1) |
|
18.2.8 Gibbons-Pope-Sezgin TN-Wave Solution |
|
|
338 | (1) |
|
18.2.9 Anninos-Li-Padi-Song-Strominger TN-Wave Solution |
|
|
338 | (1) |
|
18.2.10 Garbarz-Giribet-Vasquez TN-Wave Solution |
|
|
339 | (1) |
|
18.3 pp-Wave Solutions; Lambda = 0 |
|
|
340 | (5) |
|
18.3.1 Martinez-Shepley pp-Wave Solution; Lambda = 0 |
|
|
340 | (1) |
|
18.3.2 Aragon pp-Wave Solution; Lambda = 0 |
|
|
341 | (1) |
|
18.3.3 Percacci-Sodano-Vuorio pp-Wave Solution; Lambda = 0 |
|
|
341 | (1) |
|
18.3.4 Hall-Morgan-Perjes pp-Wave Solution; Lambda = 0 |
|
|
341 | (1) |
|
18.3.5 Dereli-Tucker pp-Wave Solution; Lambda = 0 |
|
|
342 | (1) |
|
18.3.6 Deser-Steif pp-Wave Solution; Lambda = 0 |
|
|
342 | (1) |
|
18.3.7 Clement pp-Wave Solution; Lambda = 0 |
|
|
342 | (1) |
|
18.3.8 Cavaglia pp-Wave Solution; Lambda = 0 |
|
|
343 | (1) |
|
18.3.9 Dereli-Sarioglu pp-Wave Solution; Lambda = 0 |
|
|
343 | (1) |
|
18.3.10 Garcia-Hehl-Heinicke-Macias pp-Wave Solution; Lambda = 0 |
|
|
343 | (1) |
|
18.3.11 Macias-Camacho pp-Wave Solution; Lambda = 0 |
|
|
344 | (1) |
19 Kundt Spacetimes in TMG |
|
345 | (59) |
|
19.1 Null Geodesic Vector Field |
|
|
345 | (2) |
|
19.2 General Kundt Metrics |
|
|
347 | (3) |
|
|
348 | (2) |
|
19.3 3D Canonical Kundt Metric |
|
|
350 | (7) |
|
19.3.1 Petrov Classification of the Cotton and Traceless Ricci Tensors |
|
|
352 | (3) |
|
19.3.2 Sub-Branch W1(r) of the General Kundt Metric in TMG |
|
|
355 | (1) |
|
19.3.3 Kundt Metric Structure for W1(r) |
|
|
356 | (1) |
|
19.4 Type II CSI Kundt Metric; W1 = 2mu/3 |
|
|
357 | (2) |
|
19.4.1 Negative Cosmological Constant; Lambda = -m2 |
|
|
358 | (1) |
|
19.4.2 Positive Cosmological Constant; Lambda = m2 |
|
|
359 | (1) |
|
19.4.3 Zero Cosmological Constant; Lambda = 0 |
|
|
359 | (1) |
|
19.5 Type D CSI Kundt Solutions; W1 = 2mu/3, F0 = 0 |
|
|
359 | (1) |
|
19.6 Petrov Type III Kundt Metrics |
|
|
360 | (1) |
|
19.7 Type III Kundt Solution; Lambda = 0, W1 = 0 |
|
|
361 | (1) |
|
19.7.1 Type N pp-Wave Limit |
|
|
362 | (1) |
|
19.8 Type III Kundt Solution; Lambda = 0, W1 = -2/r |
|
|
362 | (4) |
|
|
365 | (1) |
|
19.9 Type III Kundt Solution; Lambda = -m2, W1 = -2m |
|
|
366 | (3) |
|
19.9.1 Type III Kundt Solution; Lambda = -m2, W1 = -2m, mu ±m |
|
|
366 | (1) |
|
19.9.2 Type III Kundt Solution; Lambda = -m2, W1 = -2m, mu = m |
|
|
367 | (1) |
|
19.9.3 Type III Kundt Solution; Lambda = -m2, W1 = -2m, mu = -m |
|
|
368 | (1) |
|
19.10 Type III Kundt Metric; Lambda = -m2, W1 = -2m coth(m r) |
|
|
369 | (15) |
|
19.10.1 Type III Kundt Solution; Lambda = -m2, W1 = -2m phi |
|
|
375 | (2) |
|
19.10.3 Type III Kundt Solution; Lambda = -m2, W1 = -2m coth(m r), mu = -m |
|
|
377 | (4) |
|
19.10.4 Type III Kundt Solution; Lambda = -m2, W1 = -2m coth(mr), mu = m |
|
|
381 | (3) |
|
19.11 Type III Kundt Metric; Lambda = -m2; W1 = -2 m tanh(m r) |
|
|
384 | (14) |
|
19.11.1 Type III Kundt Solution; Lambda = -m2, W1 = -2m tanh(mr), mu # ±m |
|
|
386 | (5) |
|
19.11.2 Type III Kundt Solution; Lambda = -m2, W1 = -2m tanh(mr), mu = -m |
|
|
391 | (3) |
|
19.11.3 Type III Kundt Solution; Lambda = -m2, W1 = -2m tanh(mr), mu = m |
|
|
394 | (4) |
|
19.12 Type III Kundt Metric; Lambda = m2, W1 = -2m cot(m r), mu |
|
|
398 | (6) |
|
19.12.1 Solution Phi Through VP |
|
|
399 | (2) |
|
19.12.2 Multi Exponent-Integral Representation of Phi |
|
|
401 | (3) |
20 Cotton Tensor in Riemannian Spacetimes |
|
404 | (17) |
|
20.1 Bianchi Identities and the Irreducible Decomposition of the Curvature |
|
|
405 | (4) |
|
|
409 | (6) |
|
20.3 Conformal Correspondence |
|
|
415 | (1) |
|
20.4 Criteria for Conformal Flatness |
|
|
416 | (1) |
|
20.5 Classification of the Cotton 2-Form in 3D |
|
|
417 | (4) |
|
20.5.1 Euclidean Signature |
|
|
418 | (1) |
|
20.5.2 Lorentzian Signature |
|
|
419 | (2) |
References |
|
421 | (9) |
Index |
|
430 | |