Atnaujinkite slapukų nuostatas

El. knyga: Experimental Mathematics with Maple

(Queen Mary & Westfield College, London, UK)

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning.

Experimental Mathematics with MAPLE uniquely responds to these needs. Following an emerging trend in research, it places abstraction and axiomatization at the end of a learning process that begins with computer experimentation. It introduces the foundations of discrete mathematics and, assuming no previous knowledge of computing, gradually develops basic computational skills using the latest version of the powerful MAPLE® software. The author's approach is to expose readers to a large number of concrete computational examples and encourage them to isolate the general from the particular, to synthesize computational results, formulate conjectures, and attempt rigorous proofs.

Using this approach, Experimental Mathematics with MAPLE enables readers to build a foundation in discrete mathematics, gain valuable experience with algebraic computing, and develop a familiarity with basic abstract concepts, notation, and jargon. Its engaging style, numerous exercises and examples, and Internet posting of selected solutions and MAPLE worksheets make this text ideal for use both in the classroom and for self-study.
What is Maple?
1(5)
Integers and rationals
5(34)
Integers
5(3)
Arithmetical expressions
8(4)
Some Maple
12(8)
Divisibility
20(5)
Rationals
25(7)
Primes
32(5)
Standard library functions
37(2)
Sets and functions
39(20)
Sets
39(6)
Sets with Maple
45(3)
Functions
48(2)
User-defined functions
50(9)
Sequences
59(30)
Basics
59(2)
Sequences with Maple
61(3)
Plotting the elements of a sequence
64(3)
Periodic and eventually periodic sequences
67(3)
Some non-periodic sequences
70(7)
Basic counting sequences
77(5)
Sequences defined recursively
82(7)
Real and complex numbers
89(24)
Digits of rationals
89(7)
Real numbers
96(3)
Random and pseudo-random digits*
99(3)
Complex numbers
102(6)
Standard library functions
108(5)
Structure of expressions
113(14)
Analysis of an expression
113(4)
More on substitutions
117(2)
Functions acting on operands of expressions
119(8)
Polynomials and rational functions
127(20)
Polynomials
127(1)
Polynomial arithmetic
128(10)
Rational functions
138(1)
Basic manipulations
139(3)
Partial fractions decomposition*
142(5)
Finite sums and products
147(16)
Basics
147(2)
Sums and products with Maple
149(3)
Symbolic evaluation of sums and products
152(2)
Double sums and products
154(6)
Sums and products as recursive sequences
160(3)
Elements of programming
163(22)
Iteration
163(10)
Study of an eventually periodic sequence
173(4)
Conditional execution*
177(2)
Procedures*
179(6)
Vector spaces
185(16)
Cartesian product of sets
185(1)
Vector spaces
186(2)
Vectors with Maple
188(3)
Matrices
191(1)
Matrices with Maple
192(9)
Modular arithmetic*
201(12)
A modular system
201(3)
Arithmetic of equivalence classes
204(2)
Some arithmetical constructions in Fp
206(7)
Some abstract structures*
213(1)
The axioms of arithmetic
213(1)
Metric spaces
214(1)
Rings and fields
214(1)
Vector spaces
215
Franco Vivaldi is Professor of Applied Mathematics at Queen Mary University of London. His research interests include maps over arithmetical sets (finite fields, p-adic and algebraic numbers), piecewise isometries, space discretization and round-off errors.