Atnaujinkite slapukų nuostatas

El. knyga: Explainable Artificial Intelligence: A Practical Guide

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. It evaluates and justifies AI applications while enhancing trust in AI outcomes and aiding comprehension of AI feature development. Key topics include an overview of explainable AI, black box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI.

Technical topics discussed in the book include:

  • Explainable AI overview
  • Understanding black box models
  • Techniques for model interpretability
  • Practical applications of XAI
  • Future trends and challenges in XAI


This book explores the growing focus on artificial intelligence (AI) systems in both industry and academia. Key topics include an overview of explainable AI, black-box model understanding, interpretability techniques, practical XAI applications, and future trends and challenges in XAI.

Preface
1. Explainable Artificial Intellience Overview
2. Understanding Black Box Models
3. Techniques for Model Interpretability
4. Practical Applications of XAI
5. Future Trends and Challenges in XAI Author biography Index

Dr. Parikshit Narendra Mahalle is a senior member IEEE and is Professor, Dean Research and Development and Head of Department of Artificial Intelligence and Data Science at Vishwakarma Institute of Information Technology, Pune, India. He completed his Ph.D. from Aalborg University, Denmark and continued as Post Doc Researcher at CMI, Copenhagen, Denmark. He has 23+ years of teaching and research experience. He is an ex-member of the Board of Studies in Computer Engineering, ex-Chairman Information Technology, SPPU and various Universities and autonomous colleges across India. He has 12 patents and has 200+ research publications.

Mr. Yashwant Sudhakar Ingle is presently working at VIIT, Pune as Assistant Professor in Department of AI&DS. He has a total of 15 years work experience. He is pursuing a Ph.D. from SPPU and completed his M.Tech. CSE from Visvesvaraya National Institute of Technology, Nagpur and his B.E. CSE from Amravati University. Mr. Ingle has 4 design patents granted, 1 US patent published, 25 Indian utility patents published, 4 software copyrights and 2 literary research copyrights registered. He has authored a Springer book recently on Data Centric AI: A Beginners Guide. He has published 25+ papers in Scopus, Web of Science journals, IEEE and Springer International Conferences and received 4 Best Paper Awards at the RACE National Conference 2021.