Atnaujinkite slapukų nuostatas

El. knyga: Exploring Linear Algebra: Labs and Projects with Mathematica (R)

(Elon University, North Carolina, USA)
  • Formatas: 164 pages
  • Serija: Textbooks in Mathematics
  • Išleidimo metai: 26-Feb-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040311462
Kitos knygos pagal šią temą:
  • Formatas: 164 pages
  • Serija: Textbooks in Mathematics
  • Išleidimo metai: 26-Feb-2025
  • Leidėjas: Chapman & Hall/CRC
  • Kalba: eng
  • ISBN-13: 9781040311462
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This text focuses on the primary topics in a first course in Linear Algebra. The author includes additional advanced topics related to data analysis, singular value decomposition, and connections to differential equations. This is a lab text that would lead a class through Linear Algebra using Mathematica® demonstrations and Mathematica® coding.

The book includes interesting examples embedded in the projects. Examples include the discussions of “Lights Out”, Nim, the Hill Cipher, and a variety of relevant data science projects.

The 2nd Edition contains:

  • Additional Theorems and Problems for students to prove/disprove (these act as theory exercises at the end of most sections of the text)
  • Additional sections that support Data Analytics techniques, such as Kronecker sums and products, and LU decomposition of the Vandermonde matrix
  • Updated and expanded end-of-chapter projects

Instructors and students alike have enjoyed this popular book, as it offers the opportunity to add Mathematica® to the Linear Algebra course.

I would definitely use the book (specifically the projects at the end of each section) to motivate undergraduate research.—Nick Luke, North Carolina A&T State University.



This text focuses on the primary topics in a first course in Linear Algebra including additional advanced topics related to data analysis, singular value decomposition and connections to differential equations. This is a lab text that would lead a class through Linear Algebra using Mathematica demonstrations and Mathematica coding

1. Matrix Operations

2. Invertibility

3. Vector Spaces

4. Orthogonality

5. Matrix Decomposition with Applications

6. Applications to Differential Equations

Dr. Crista Arangala is Professor of Mathematics and Chair of the Department of Mathematics and Statistics at Elon University in North Carolina. She has been teaching and researching in a variety of fields, including inverse problems, applied partial differential equations, applied linear algebra, mathematical modeling, and service learning education. She runs a traveling science museum with her Elon University students in Kerala, India. Dr. Arangala was chosen to be a Fulbright Scholar in 2014 as a visiting lecturer at the University of Colombo where she continued her projects in inquiry learning in Linear Algebra and began working with a modeling team focusing on Dengue fever research. Dr. Arangala has published several textbooks that implore inquiry learning techniques, including Exploring Linear Algebra: Labs and Projects with MATLAB®, Mathematical Modeling: Branching Beyond Calculus, and Linear Algebra with Machine Learning and Data.