Atnaujinkite slapukų nuostatas

El. knyga: Extended Non-Equilibrium Thermodynamics: From Principles to Applications in Nanosystems

  • Formatas: 225 pages
  • Išleidimo metai: 21-Feb-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351021920
  • Formatas: 225 pages
  • Išleidimo metai: 21-Feb-2019
  • Leidėjas: CRC Press
  • Kalba: eng
  • ISBN-13: 9781351021920

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Extended Non-Equilibrium Thermodynamics provides powerful tools departing not from empirical or statistical considerations but from fundamental thermodynamic laws, proposing final solutions that are readily usable and recognizable for students, researchers and industry. The book deals with methods that allow combining easily the present theory with other fields of science, such as fluid and solid mechanics, heat and mass transfer processes, electricity and thermoelectricity, and so on. Not only are such combinations facilitated, but they are incorporated into the developments in such a way that they become part of the theory. This book aims at providing for a systematic presentation of Extended Non-Equilibrium Thermodynamics in nanosystems with a high degree of applicability. Furthermore, the book deals with how physical properties of systems behave as a function of their size. Moreover, it provides for a systematic approach to understand the behavior of thermal, electrical, thermoelectric, photovoltaic and nanofluid properties in nanosystems. Experimental results are used to validate the theory, the comparison is analysed, justified and discussed, and the theory is then again used to understand better experimental observations. The new developments in this book, being recognizable in relation with familiar concepts, should make it appealing for academics and researchers to teach and apply and graduate students to use. The text in this book is intended to bring attention to how the theory can be applied to real-life applications in nanoscaled environments. Case studies, and applications of theories, are explored including thereby nanoporous systems, solar panels, nanomedicine drug permeation and properties of nanoporous scaffolds.











Explores new generalized thermodynamic models





Provides introductory context of Extended Non-Equilibrium Thermodynamics within classical thermodynamics, theoretical fundamentals and several applications in nanosystems





Provides for a systematic approach to understand the behavior of thermal, electric, thermoelectric and viscous properties as a function of several parameters in nanosystems





Includes reflections to encourage the reader to think further and put the information into context





Examines future developments of new constitutive equations and theories and places them in the framework of real-life applications in the energetic and medical sectors, such as photovoltaic and thermoelectric devices, nanoporous media, drug delivery and scaffolds
Preface xi
Author xiii
I General Considerations
1(54)
1 Extended Non-Equilibrium Thermodynamics: Constitutive Equations at Small Length Scales and High Frequencies
3(8)
1.1 Introduction
3(1)
1.2 A General Heat Transport Equation in Terms of High-Order Heat Fluxes
3(2)
1.3 A Generalized Transport Equation in Terms of the Heat Flux
5(2)
1.4 A Simplified Expression of Eq. (1.17)
7(1)
1.5 One-Dimensional Numerical Illustration
7(2)
1.6 Extension to Other Constitutive Laws
9(1)
1.7 Conclusions
10(1)
References
10(1)
2 Heat Transfer in Nanomaterials
11(12)
2.1 Transient Heat Transport in Nanofilms
11(3)
2.1.1 Definition of the Space of State Variables
11(1)
2.1.2 Establishment of the Evolution Equations
11(1)
2.1.3 Elimination of the Fluxes
12(2)
2.2 Transient Temperature Distribution in Thin Films
14(3)
2.2.1 Initial Conditions
14(1)
2.2.2 Boundary Conditions
15(1)
2.2.3 Discussion of the Results
15(2)
2.3 Heat Conduction in Nanoparticles Through an Effective Thermal Conductivity
17(3)
2.4 Heat Conduction in Nanowires Through an Effective Thermal Conductivity
20(1)
References
20(3)
3 Heat Conduction in Nanocomposites
23(32)
3.1 Theoretical Models
23(4)
3.1.1 Effective Medium Approach
23(1)
3.1.2 Effect of Agglomeration
24(1)
3.1.3 Effective Thermal Conductivity of the Matrix and the Nanoparticles
24(1)
3.1.4 Nanocomposites with Embedded Nanowires
25(1)
3.1.5 Temperature Dependence
26(1)
3.2 Polymeric Nanocomposites
27(7)
3.2.1 Volume-Fraction-Dependent Agglomeration
27(4)
3.2.2 Dependence of the Effective Thermal Conductivity Versus the Volume-Fraction-Dependent Agglomeration
31(1)
3.2.3 Final Validation of Dependence of the Effective Thermal Conductivity Versus the Volume-Fraction-Dependent Agglomeration
32(2)
3.3 Semiconductor Nanocomposites
34(6)
3.3.1 Application to Si/Ge Nanocomposites with Nanoparticle Inclusions
34(4)
3.3.2 Application to Si/Ge Nanocomposites with Nanowire Inclusions
38(2)
3.4 Nanoporous Composites
40(8)
3.4.1 Nanoporous Materials
40(6)
3.4.2 Nanoporous Particles in a Composite
46(2)
References
48(7)
II Selected Applications
55(108)
4 Thermal Rectifier Efficiency of Various Bulk-Nanoporous Silicon Devices
57(14)
4.1 Principles of Thermal Rectifiers
57(1)
4.2 Thermal Conductivity of Bulk and Porous Silicon
58(2)
4.2.1 Thermal Conductivity
58(2)
4.2.2 Notions on the Thermal Boundary Resistance
60(1)
4.3 Configurations for Thermal Rectifiers
60(4)
4.3.1 Homogeneous Two- and Three-Phase Systems
60(2)
4.3.2 Bulk Porous-Bulk and Porous-Bulk-Porous Si Configurations
62(1)
4.3.3 Graded Porosity
63(1)
4.3.4 Graded Pore Size
64(1)
4.4 Analysis of Thermal Rectification
64(4)
4.4.1 Homogeneous Two- and Three-Phase Systems
64(1)
4.4.2 Bulk--Porous--Bulk and Porous--Bulk--Porous Si Configurations
65(1)
4.4.3 Graded Porosity
65(2)
4.4.4 Graded Pore Size
67(1)
4.5 Combining Graded Porosity and Pore Size
68(1)
References
68(3)
5 Thermoelectric Devices
71(24)
5.1 Thermodynamics Behind Thermoelectric Devices
71(2)
5.2 Basics in Nanoscale Heat and Electric Transfer
73(2)
5.3 Nanofilm Thermoelectric Devices
75(4)
5.3.1 Theory
75(1)
5.3.2 Case Study: Thin Films of Bi and Bi2Te3
76(1)
5.3.2.1 Material Properties
76(1)
5.3.2.2 Discussion
77(2)
5.4 Nanocomposite Thermoelectric Devices
79(9)
5.4.1 Theory
79(5)
5.4.2 Two Case Studies: Nanocomposites of Bi Nanoparticles in Bi2Te3 and of Bi2Te3 Nanoparticles in Bi
84(4)
5.5 Thin-Film Nanocomposite Thermoelectric Devices
88(3)
5.5.1 Theory
88(2)
5.5.2 Discussion on a Gedankenexperiment
90(1)
References
91(4)
6 Enhancement of the Thermal Conductivity in Nanofluids and the Role of Viscosity
95(26)
6.1 Context
95(1)
6.2 Influence of Several Heat Transfer Mechanisms
95(4)
6.2.1 Hypotheses
95(1)
6.2.2 Liquid Layering
96(1)
6.2.3 Agglomeration of Particles
97(1)
6.2.4 Brownian Motion
98(1)
6.3 Viscosity of Nanofluids
99(5)
6.3.1 Viscous Pressure Flux
99(1)
6.3.2 Third-Order Approximation
100(3)
6.3.3 Complete Expression
103(1)
6.4 Discussion and Case Studies for the Thermal Conductivity
104(6)
6.4.1 Thermal Conductivities of Alumina Water, Alumina--Ethylene Glycol and Alumina--50/50 w% Water/Ethylene Glycol Mixture Nanofluids
104(3)
6.4.2 Note on the Brownian Motion
107(1)
6.4.3 Thermal Conductivity as a Function of the Particle Size
108(1)
6.4.4 Complementary Comments
109(1)
6.5 Discussion and Case Studies for the Viscosity
110(2)
6.5.1 Alumina Al2O3 Particles in Water
110(1)
6.5.2 Li Nanoparticles Dispersed in Liquid Ar
110(2)
6.6 Closing Notions on the Use of Nanofluids
112(1)
References
113(8)
7 Nanoporous Flow and Permeability
121(18)
7.1 Porous Flow
121(1)
7.2 Nanoporous Flow
122(4)
7.2.1 Extended Constitutive Equation of the Mass Flux
122(2)
7.2.2 The Basic Momentum Equation
124(1)
7.2.3 Absolute Permeability
125(1)
7.3 Effective Permeability
126(6)
7.3.1 Nanopores with Circular Cross Sections
126(2)
7.3.2 Nanopores with Parallelepiped Cross Sections
128(2)
7.3.3 Effective Viscosity
130(2)
7.4 Asymptotic Limits
132(3)
7.5 Case Study: Flow in Nanoporous Glass
135(1)
References
136(3)
8 Opto-Thermoelectric Coupling for Photovoltaic Energy
139(24)
8.1 State of the Art
139(1)
8.2 Nanostructured TE Model
140(4)
8.2.1 TE Efficiency
140(2)
8.2.2 TE Material Properties for the Nanocomposite Legs
142(2)
8.3 Nanoscale Material Properties
144(3)
8.4 Optoelectric Model for the PV Device
147(8)
8.4.1 Basic Considerations
147(2)
8.4.2 Depletion Region
149(1)
8.4.3 Quasi-Neutral Regions
150(4)
8.4.4 PV Efficiency
154(1)
8.5 Analysis of the Heat Management of the Cooled Hybrid System
155(5)
8.5.1 Heat Generation in the PV Device
155(2)
8.5.2 Temperature Profiles
157(1)
8.5.3 Operating Temperatures
158(1)
8.5.4 Total Efficiency of the Hybrid System
159(1)
References
160(3)
III Advanced Applications and Perspectives
163(38)
9 Optimal Enhancement of Photovoltaic Energy by Coupling to a Cooled Nanocomposite Thermoelectric Hybrid System
165(16)
9.1 Case Study: Material Properties and Operating Conditions
165(2)
9.1.1 Material Properties for the Photovoltaic Materials
165(1)
9.1.2 Material Properties for the Thermoelectric Materials
166(1)
9.1.3 Other Operating Characteristics and General Physical Properties
167(1)
9.2 Case Study: Photovoltaic Performance
167(9)
9.2.1 Optimal Thickness of the Photovoltaic Device
167(6)
9.2.2 Influence of Nanocomposite Characteristics on Thermoelectric Efficiency
173(3)
9.2.3 Optimal Hybrid Opto-Thermoelectric Efficiency
176(1)
9.3 Discussion
176(1)
References
177(4)
10 Nanomedicine: Permeation of Drug Delivery Through Cell Membrane
181(8)
10.1 Transporters of Drugs
181(1)
10.1.1 Background
181(1)
10.1.2 Challenges
181(1)
10.1.2.1 Mucous Layer
182(1)
10.1.2.2 Apical Cell Membrane
182(1)
10.1.2.3 Basal Cell Membrane
182(1)
10.1.2.4 Capillary Wall
182(1)
10.2 Permeability Enhancement
182(1)
10.2.1 Nano-emulsions
182(1)
10.2.2 Spray Freeze-Drying
182(1)
10.2.3 Chitosan Derivatives
183(1)
10.2.4 Straight Chain Fatty Acids
183(1)
10.2.5 Self-Micro-Emulsifying Drug Delivery Systems
183(1)
10.3 Modeling Considerations for Drug Delivery Permeation
183(1)
10.3.1 Context
183(1)
10.3.2 Solubility and Permeability
183(1)
10.4 Example: Cell Permeation
184(2)
10.4.1 Permeation as a Set of Barrier Resistances
184(1)
10.4.2 Solubility Diffusion Theory
185(1)
References
186(3)
11 Self-Assembled Nanostructures as Building Blocks for Nanomedicine Carriers: Thermal and Electrical Conductance
189(12)
11.1 Context
189(1)
11.2 Theory
190(1)
11.3 Experimental
191(2)
11.3.1 Self-Assembly Process
191(1)
11.3.2 Measurements
192(1)
11.3.2.1 Electrical Conductivity
192(1)
11.3.2.2 Thermal Conductivity
193(1)
11.3.2.3 Thickness of Deposited Layer
193(1)
11.4 Results and Discussion
193(3)
11.4.1 Electrical Conductivity
193(1)
11.4.2 Thermal Conductivity
194(1)
11.4.3 Porosity
195(1)
11.5 Linking Theory to Experiment
196(1)
References
197(4)
Epilogue 201(2)
Unit Conversions 203(2)
Index 205
Hatim Machrafi obtained his PhD from the Pierre and Marie Curie University (Paris 6), Paris, France. He has been working as a senior researcher at the University of Ličge (ULičge), Ličge, Belgium, and as visiting researcher at the free University of Brussels (ULB), Brussels, Belgium, specializing in non-equilibrium thermodynamics, nanotechnology applied to energetics and nanomedicine, and advanced materials. Recently, he is also active at the Sorbonne University, Paris, France, in the field of microfluidics and renewable energy.