Atnaujinkite slapukų nuostatas

Factorization and Primality Testing 1989 ed. [Kietas viršelis]

  • Formatas: Hardback, 240 pages, aukštis x plotis: 234x156 mm, weight: 1200 g, XIV, 240 p., 1 Hardback
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 02-Oct-1989
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387970401
  • ISBN-13: 9780387970400
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 240 pages, aukštis x plotis: 234x156 mm, weight: 1200 g, XIV, 240 p., 1 Hardback
  • Serija: Undergraduate Texts in Mathematics
  • Išleidimo metai: 02-Oct-1989
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 0387970401
  • ISBN-13: 9780387970400
Kitos knygos pagal šią temą:
This book focuses on a single issue: how to factor a large integer or prove its prime. Provides a survey of the heritage and an introduction to the current research in the field, with a strong emphasis on algorithms. Can be used as an introduction to number theory. Annotation copyright Book News, Inc. Portland, Or.

"About binomial theorems I'm teeming with a lot of news, With many cheerful facts about the square on the hypotenuse. " - William S. Gilbert (The Pirates of Penzance, Act I) The question of divisibility is arguably the oldest problem in mathematics. Ancient peoples observed the cycles of nature: the day, the lunar month, and the year, and assumed that each divided evenly into the next. Civilizations as separate as the Egyptians of ten thousand years ago and the Central American Mayans adopted a month of thirty days and a year of twelve months. Even when the inaccuracy of a 360-day year became apparent, they preferred to retain it and add five intercalary days. The number 360 retains its psychological appeal today because it is divisible by many small integers. The technical term for such a number reflects this appeal. It is called a "smooth" number. At the other extreme are those integers with no smaller divisors other than 1, integers which might be called the indivisibles. The mystic qualities of numbers such as 7 and 13 derive in no small part from the fact that they are indivisibles. The ancient Greeks realized that every integer could be written uniquely as a product of indivisibles larger than 1, what we appropriately call prime numbers. To know the decomposition of an integer into a product of primes is to have a complete description of all of its divisors.
1 Unique Factorization and the Euclidean Algorithm.- 1.1 A theorem of
Euclid and some of its consequences.- 1.2 The Fundamental Theorem of
Arithmetic.- 1.3 The Euclidean Algorithm.- 1.4 The Euclidean Algorithm in
practice.- 1.5 Continued fractions, a first glance.- 1.6 Exercises.- 2 Primes
and Perfect Numbers.- 2.1 The Number of Primes.- 2.2 The Sieve of
Eratosthenes.- 2.3 Trial Division.- 2.4 Perfect Numbers.- 2.5 Mersenne
Primes.- 2.6 Exercises.- 3 Fermat, Euler, and Pseudoprimes.- 3.1 Fermats
Observation.- 3.2 Pseudoprimes.- 3.3 Fast Exponentiation.- 3.4 A Theorem of
Euler.- 3.5 Proof of Fermats Observation.- 3.6 Implications for Perfect
Numbers.- 3.7 Exercises.- 4 The RSA Public Key Crypto-System.- 4.1 The Basic
Idea.- 4.2 An Example.- 4.3 The Chinese Remainder Theorem.- 4.4 What if the
Moduli are not Relatively Prime?.- 4.5 Properties of Eulers ų Function.-
Exercises.- 5 Factorization Techniques from Fermat to Today.- 5.1 Fermats
Algorithm.- 5.2 Kraitchiks Improvement.- 5.3 Pollard Rho.- 5.4 Pollard p
1.- 5.5 Some Musings.- 5.6 Exercises.- 6 Strong Pseudoprimes and Quadratic
Residues.- 6.1 The Strong Pseudoprime Test.- 6.2 Refining Fermats
Observation.- 6.3 No Strong Carmichael Numbers.- 6.4 Exercises.- 7
Quadratic Reciprocity.- 7.1 The Legendre Symbol.- 7.2 The Legendre symbol for
small bases.- 7.3 Quadratic Reciprocity.- 7.4 The Jacobi Symbol.- 7.5
Computing the Legendre Symbol.- 7.6 Exercises.- 8 The Quadratic Sieve.- 8.1
Dixons Algorithm.- 8.2 Pomerances Improvement.- 8.3 Solving Quadratic
Congruences.- 8.4 Sieving.- 8.5 Gaussian Elimination.- 8.6 Large Primes and
Multiple Polynomials.- 8.7 Exercises.- 9 Primitive Roots and a Test for
Primality.- 9.1 Orders and Primitive Roots.- 9.2 Properties of Primitive
Roots.- 9.3Primitive Roots for Prime Moduli.- 9.4 A Test for Primality.- 9.5
More on Primality Testing.- 9.6 The Rest of Gauss Theorem.- 9.7 Exercises.-
10 Continued Fractions.- 10.1 Approximating the Square Root of 2.- 10.2 The
Bhįscara-Brouncker Algorithm.- 10.3 The Bhįscara-Brouncker Algorithm
Explained.- 10.4 Solutions Really Exist.- 10.5 Exercises.- 11 Continued
Fractions Continued, Applications.- 11.1 CFRAC.- 11.2 Some Observations on
the Bhįscara-Brouncker Algorithm.- 11.3 Proofs of the Observations.- 11.4
Primality Testing with Continued Fractions.- 11.5 The Lucas-Lehmer Algorithm
Explained.- 11.6 Exercises.- 12 Lucas Sequences.- 12.1 Basic Definitions.-
12.2 Divisibility Properties.- 12.3 Lucas Primality Test.- 12.4 Computing
the Vs.- 12.5 Exercises.- 13 Groups and Elliptic Curves.- 13.1 Groups.- 13.2
A General Approach to Primality Tests.- 13.3 A General Approach to
Factorization.- 13.4 Elliptic Curves.- 13.5 Elliptic Curves Modulo p.- 13.6
Exercises.- 14 Applications of Elliptic Curves.- 14.1 Computation on Elliptic
Curves.- 14.2 Factorization with Elliptic Curves.- 14.3 Primality Testing.-
14.4 Quadratic Forms.- 14.5 The Power Residue Symbol.- 14.6 Exercises.- The
Primes Below 5000.