1 Introduction |
|
1 | (4) |
|
1.1 Applications of Discrete Fourier Transform |
|
|
2 | (3) |
2 Discrete Fourier Transform |
|
5 | (36) |
|
|
5 | (2) |
|
|
5 | (1) |
|
|
5 | (1) |
|
2.1.3 Unitary DFT (Normalized) |
|
|
6 | (1) |
|
|
7 | (6) |
|
2.3 Properties of the DFT |
|
|
13 | (5) |
|
|
18 | (6) |
|
2.4.1 Multiplication Theorem |
|
|
24 | (1) |
|
|
24 | (3) |
|
2.6 Overlap-Add and Overlap-Save Methods |
|
|
27 | (4) |
|
2.6.1 The Overlap-Add Method |
|
|
27 | (4) |
|
2.7 Zero Padding in the Data Domain |
|
|
31 | (1) |
|
2.8 Computation of DFTs of Two Real Sequences Using One Complex FFT |
|
|
32 | (2) |
|
2.9 A Circulant Matrix Is Diagonalized by the DFT Matrix |
|
|
34 | (3) |
|
|
34 | (1) |
|
|
34 | (1) |
|
2.9.3 A Circulant Matrix Is Diagonalized by the DFT Matrix |
|
|
35 | (2) |
|
|
37 | (1) |
|
|
37 | (3) |
|
|
40 | (1) |
3 Fast Algorithms |
|
41 | (70) |
|
3.1 Radix-2 DIT-FFT Algorithm |
|
|
42 | (5) |
|
3.1.1 Sparse Matrix Factors for the IFFT N = 8 |
|
|
46 | (1) |
|
3.2 Fast Algorithms by Sparse Matrix Factorization |
|
|
47 | (9) |
|
|
56 | (5) |
|
|
57 | (4) |
|
3.3.2 In-Place Computations |
|
|
61 | (1) |
|
|
61 | (2) |
|
|
63 | (3) |
|
3.6 FFT for N a Composite Number |
|
|
66 | (1) |
|
|
67 | (6) |
|
|
73 | (2) |
|
3.9 Split-Radix FFT Algorithm |
|
|
75 | (3) |
|
3.10 Fast Fourier and BIFORE Transforms by Matrix Partitioning |
|
|
78 | (5) |
|
3.10.1 Matrix Partitioning |
|
|
78 | (2) |
|
|
80 | (2) |
|
3.10.3 BT (BIFORE Transform) |
|
|
82 | (1) |
|
3.10.4 CBT (Complex BIFORE Transform) |
|
|
82 | (1) |
|
3.10.5 DFT (Sparse Matrix Factorization) |
|
|
82 | (1) |
|
3.11 The Winograd Fourier Transform Algorithm |
|
|
83 | (9) |
|
|
83 | (1) |
|
|
84 | (1) |
|
|
85 | (1) |
|
3.11.4 DFT Algorithms for Real-Valued Input Data |
|
|
85 | (2) |
|
3.11.5 Winograd Short-N DFT Modules |
|
|
87 | (1) |
|
3.11.6 Prime Factor Map Indexing |
|
|
88 | (2) |
|
3.11.7 Winograd Fourier Transform Algorithm (WFTA) |
|
|
90 | (2) |
|
3.12 Sparse Factorization of the DFT Matrix |
|
|
92 | (5) |
|
3.12.1 Sparse Factorization of the DFT Matrix Using Complex Rotations |
|
|
92 | (2) |
|
3.12.2 Sparse Factorization of the DFT Matrix Using Unitary Matrices |
|
|
94 | (3) |
|
3.13 Unified Discrete FourierHartley Transform |
|
|
97 | (7) |
|
3.13.1 Fast Structure for UDFHT |
|
|
101 | (3) |
|
3.14 Bluestein's FFT Algorithm |
|
|
104 | (2) |
|
3.15 Rader Prime Algorithm |
|
|
106 | (1) |
|
|
107 | (1) |
|
|
108 | (2) |
|
|
110 | (1) |
4 Integer Fast Fourier Transform |
|
111 | (16) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (7) |
|
4.3.1 Fixed-Point Arithmetic Implementation |
|
|
117 | (2) |
|
4.4 Integer Discrete Fourier Transform |
|
|
119 | (6) |
|
4.4.1 Near-Complete Integer DFT |
|
|
119 | (2) |
|
4.4.2 Complete Integer DFT |
|
|
121 | (2) |
|
4.4.3 Energy Conservation |
|
|
123 | (1) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (1) |
|
|
126 | (1) |
5 Two-Dimensional Discrete Fourier Transform |
|
127 | (58) |
|
|
127 | (4) |
|
|
131 | (9) |
|
|
131 | (1) |
|
|
131 | (2) |
|
5.2.3 Circular Shift in Time/Spatial Domain (Periodic Shift) |
|
|
133 | (1) |
|
5.2.4 Circular Shift in Frequency Domain (Periodic Shift) |
|
|
133 | (2) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
5.2.8 Convolution Theorem |
|
|
136 | (1) |
|
5.2.9 Correlation Theorem |
|
|
137 | (2) |
|
5.2.10 Spatial Domain Differentiation |
|
|
139 | (1) |
|
5.2.11 Frequency Domain Differentiation |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
139 | (1) |
|
5.3 Two-Dimensional Filtering |
|
|
140 | (10) |
|
5.3.1 Inverse Gaussian Filter (IGF) |
|
|
142 | (1) |
|
|
142 | (1) |
|
5.3.3 Homomorphic Filtering |
|
|
143 | (3) |
|
|
146 | (2) |
|
5.3.5 Gaussian Lowpass Filter |
|
|
148 | (2) |
|
5.4 Inverse and Wiener Filtering |
|
|
150 | (6) |
|
|
151 | (3) |
|
5.4.2 Geometric Mean Filter (GMF) |
|
|
154 | (2) |
|
5.5 Three-Dimensional DFT |
|
|
156 | (2) |
|
|
156 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (1) |
|
5.6 Variance Distribution in the 1-D DFT Domain |
|
|
158 | (2) |
|
5.7 Sum of Variances Under Unitary Transformation Is Invariant |
|
|
160 | (1) |
|
5.8 Variance Distribution in the 2-D DFT Domain |
|
|
160 | (2) |
|
5.9 Quantization of Transform Coefficients can be Based on Their Variances |
|
|
162 | (4) |
|
5.10 Maximum Variance Zonal Sampling (MVZS) |
|
|
166 | (2) |
|
5.11 Geometrical Zonal Sampling (GZS) |
|
|
168 | (1) |
|
|
168 | (1) |
|
|
169 | (1) |
|
|
170 | (15) |
6 Vector-Radix 2D-FFT Algorithms |
|
185 | (10) |
|
|
185 | (4) |
|
|
189 | (4) |
|
|
193 | (2) |
7 Nonuniform DFT |
|
195 | (40) |
|
|
195 | (1) |
|
|
196 | (12) |
|
7.2.1 DFT of Uniformly Sampled Sequences |
|
|
196 | (1) |
|
7.2.2 Definition of the NDFT |
|
|
197 | (3) |
|
7.2.3 Properties of the NDFT |
|
|
200 | (3) |
|
7.2.4 Examples of the NDFT-2 |
|
|
203 | (5) |
|
7.3 Fast Computation of NDFT |
|
|
208 | (9) |
|
|
208 | (5) |
|
|
213 | (4) |
|
|
217 | (5) |
|
7.4.1 2D Sampling Structure |
|
|
218 | (3) |
|
7.4.2 Example of Two-Dimensional Nonuniform Rectangular Sampling |
|
|
221 | (1) |
|
7.5 Filter Design Using NDFT |
|
|
222 | (11) |
|
7.5.1 Low-Pass Filter Design |
|
|
222 | (8) |
|
7.5.2 Example of Nonuniform Low-Pass Filter |
|
|
230 | (3) |
|
|
233 | (1) |
|
|
233 | (2) |
8 Applications |
|
235 | (82) |
|
8.1 Frequency Domain Downsampling |
|
|
235 | (5) |
|
8.1.1 Frequency Domain Upsampling (Zero Insertion) |
|
|
238 | (2) |
|
8.2 Fractal Image Compression |
|
|
240 | (4) |
|
8.3 Phase Only Correlation |
|
|
244 | (3) |
|
8.4 Image Rotation and Translation Using DFT/FFT |
|
|
247 | (2) |
|
8.5 Intraframe Error Concealment |
|
|
249 | (1) |
|
8.6 Surface Texture Analysis |
|
|
250 | (1) |
|
|
251 | (1) |
|
|
251 | (2) |
|
|
253 | (3) |
|
8.9.1 Audio Watermarking Using Perceptual Masking |
|
|
255 | (1) |
|
|
256 | (2) |
|
8.10.1 Signal Representation of OFDM Using IFFT/FFT |
|
|
257 | (1) |
|
8.11 FFT Processors for OFDM |
|
|
258 | (2) |
|
8.12 DF DFT-Based Channel Estimation Method |
|
|
260 | (2) |
|
8.12.1 DF DFT-Based Channel Estimation Method |
|
|
260 | (2) |
|
8.13 The Conjugate-Gradient Fast Fourier Transform (CG-FFT) |
|
|
262 | (1) |
|
8.14 Modified Discrete Cosine Transform (MDCT) |
|
|
262 | (4) |
|
|
266 | (7) |
|
8.16 Perceptual Transform Audio Coder |
|
|
273 | (1) |
|
|
274 | (1) |
|
8.18 NMR Measurement System |
|
|
274 | (1) |
|
8.19 Audio Coder for Mobile Reception |
|
|
275 | (2) |
|
8.20 ASPEC (Adaptive Spectral Perceptual Entropy Coding of High Quality Music Signals) |
|
|
277 | (1) |
|
8.21 RELP Vocoder (RELP: Residual Excited Linear Prediction) |
|
|
278 | (1) |
|
8.22 Homomorphic Vocoders |
|
|
278 | (2) |
|
8.23 MUSICAM (Masking-Pattern Universal Sub-Band Integrated Coding and Multiplexing) |
|
|
280 | (1) |
|
|
280 | (3) |
|
8.25 IMDCT/IMDST Implementation via IFFT |
|
|
283 | (4) |
|
8.26 MDCT/MDST Implementation via IFFT |
|
|
287 | (1) |
|
8.27 Autocorrelation Function and Power Density Spectrum |
|
|
287 | (2) |
|
8.27.1 Filtered White Noise |
|
|
288 | (1) |
|
8.28 Three-Dimensional Face Recognition |
|
|
289 | (2) |
|
8.29 Two-Dimesional Multirate Processing |
|
|
291 | (9) |
|
8.29.1 Upsampling and Interpolation |
|
|
292 | (2) |
|
8.29.2 Downsampling and Decimation |
|
|
294 | (6) |
|
8.30 Fast Uniform Discrete Curvelet Transform (FUDCuT) |
|
|
300 | (11) |
|
8.30.1 The Radon Transform |
|
|
300 | (1) |
|
8.30.2 The Ridgelet Transform |
|
|
301 | (2) |
|
8.30.3 The Curvelet Transform |
|
|
303 | (8) |
|
|
311 | (3) |
|
|
314 | (3) |
|
8.32.1 Directional Bandpass Filters |
|
|
315 | (2) |
Appendix A: Performance Comparison of Various Discrete Transforms |
|
317 | (8) |
|
A.1 Transform Coding Gain |
|
|
318 | (1) |
|
A.2 Variance Distribution in the Transform Domain |
|
|
319 | (1) |
|
|
319 | (1) |
|
A.4 Rate Versus Distortion (Rate-Distortion) |
|
|
319 | (1) |
|
|
320 | (2) |
|
A.6 Scalar Wiener Filtering |
|
|
322 | (1) |
|
A.7 Geometrical Zonal Sampling (GZS) |
|
|
323 | (1) |
|
A.8 Maximum Variance Zonal Sampling (MVZS) |
|
|
324 | (1) |
Appendix B: Spectral Distance Measures of Image Quality |
|
325 | (8) |
|
|
328 | (5) |
Appendix C: Integer Discrete Cosine Transform (INTDCT) |
|
333 | (16) |
|
C.1 Integer DCT Via Lifting |
|
|
333 | (4) |
|
C.1.1 Decomposition of DCT Via WalshHadamard Transform |
|
|
334 | (3) |
|
C.1.2 Implementation of Integer DCT |
|
|
337 | (1) |
|
C.2 Integer DCT by the Principle of Dyadic Symmetry |
|
|
337 | (9) |
|
C.2.1 Generation of the Order-Eight Integer DCT |
|
|
338 | (2) |
|
C.2.2 Integer DCTs in Video Coding Standards |
|
|
340 | (5) |
|
C.2.3 Performance of Eight-Point Integer DCTs |
|
|
345 | (1) |
|
|
346 | (1) |
|
|
347 | (2) |
Appendix D: DCT and DST |
|
349 | (14) |
|
D.1 Kernels for DCT and DST |
|
|
349 | (2) |
|
D.2 Derivation of Unitary DCTs and DSTs |
|
|
351 | (8) |
|
D.3 Circular Convolution Using DCTs and DSTs Instead of FFTs |
|
|
359 | (1) |
|
D.4 Circular Shifting Property of the DCT |
|
|
360 | (1) |
|
|
361 | (1) |
|
|
361 | (2) |
Appendix E: Kronecker Products and Separability |
|
363 | (4) |
|
|
363 | (1) |
|
E.2 Generalized Kronecker Product |
|
|
364 | (1) |
|
E.3 Separable Transformation |
|
|
365 | (2) |
Appendix F: Mathematical Relations |
|
367 | (2) |
|
|
368 | (1) |
Appendix G: Basics of MATLAB |
|
369 | (10) |
|
G.1 List of MATLAB Related Websites |
|
|
375 | (1) |
|
|
375 | (1) |
|
G.1.2 MATLAB Commands and Functions |
|
|
375 | (1) |
|
G.1.3 MATLAB Summary and Tutorial |
|
|
375 | (1) |
|
|
375 | (1) |
|
|
375 | (1) |
|
G.2 List of MATLAB Related Books |
|
|
375 | (4) |
Appendix H: |
|
379 | (4) |
|
H.1 MATLAB Code for 15-Point WFTA |
|
|
379 | (3) |
|
H.2 MATLAB Code for Phase Only Correlation (POC) |
|
|
382 | (1) |
Bibliography |
|
383 | (32) |
Index |
|
415 | |