Atnaujinkite slapukų nuostatas

El. knyga: Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems

Edited by (Professor of Applied Mechanics, Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy)
  • Formatas: PDF+DRM
  • Išleidimo metai: 05-Jun-2021
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128224885
Kitos knygos pagal šią temą:
  • Formatas: PDF+DRM
  • Išleidimo metai: 05-Jun-2021
  • Leidėjas: Academic Press Inc
  • Kalba: eng
  • ISBN-13: 9780128224885
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems.

Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more.

  • Presents recent advances of theory, technological aspects, and applications of advanced diagnosis and prognosis methodologies in engineering applications
  • Provides a series of the latest results, including fault detection, isolation, fault tolerant control, failure prognosis of components, and more
  • Gives numerical and simulation results in each chapter to reflect engineering practices
Contributors ix
Preface xi
1 Quality-related fault detection and diagnosis: a technical review and summary
Guang Wang
Hamid Reza Karimi
1.1 Introduction
1(5)
1.2 Basic methodology
6(3)
1.3 Recent research
9(18)
1.4 Simulation
27(16)
Appendix A Description of the variables and faults
43(4)
References
47(4)
2 Canonical correlation analysis-based fault diagnosis method for dynamic processes
Zhiwen Chen
Ketian Liang
2.1 Introduction
51(2)
2.2 Preliminaries
53(10)
2.3 CCA-based fault diagnosis method for dynamic processes
63(8)
2.4 Experimental results and analysis
71(11)
2.5 Conclusion
82(2)
Acknowledgments
84(1)
References
84(5)
3 Hoc Fault estimation for linear discrete time-varying systems with random uncertainties
Yueyang Li
3.1 Introduction
89(2)
3.2 Robust H∞ fault detection for LDTV systems with multiplicative noise
91(11)
3.3 Robust H∞ fault detection for LDTV systems with measurement packet loss
102(9)
3.4 Fixed-lag H∞ fault estimator design for LDTV systems under an unreliable communication link
111(12)
3.5 Conclusion
123(1)
Acknowledgments
123(1)
References
123(4)
4 Fault diagnosis and failure prognosis of electrical drives
Elias G. Strangas
4.1 Introduction
127(5)
4.2 What can fail and how
132(12)
4.3 Diagnosis methodology and tools
144(6)
4.4 Faults, their manifestation, and diagnosis
150(15)
4.5 Failure prognosis, fault mitigation, and reliability
165(10)
References
175(7)
5 Intelligent fault diagnosis for dynamic systems via extended state observer and soft computing
Paul P. Lin
5.1 Introduction
182(1)
5.2 Extended state observer
183(5)
5.3 Case study: three-tank dynamic system
188(4)
5.4 Fault detection by means of ESO
192(2)
5.5 Fault isolation and fault identification
194(3)
5.6 Simultaneous faults of different types
197(3)
5.7 Isolation of simultaneous process faults and actuator faults
200(3)
5.8 Conclusion and future work
203(1)
References
204(3)
6 Fault diagnosis and failure prognosis in hydraulic systems
Jie Liu
Yanhe Xu
Kaibo Zhou
Ming-Feng Ge
6.1 Application status of sensor detection technology
207(10)
6.2 Cavitation research
217(12)
6.3 Intelligent evaluation and diagnosis technology
229(15)
6.4 Prognostics research
244(9)
References
253(11)
7 Fault detection and fault identification in marine current turbines
Tianzhen Wang
Zhichao Li
Yilai Zheng
7.1 The HT-based detection method
264(5)
7.2 The wavelet threshold denoising-based dectection method
269(14)
7.3 The identification method of blade attachment based on the sparse autoencoder and softmax regression
283(7)
7.4 The identification method of blade attachment based on depthwise separable CNN
290(9)
7.5 Conclusion and future works
299(1)
References
300(5)
8 Quadrotor actuator fault diagnosis and accommodation based on nonlinear adaptive state observer
Sicheng Zhou
Kexin Guo
Xiang Yu
Lei Guo
Youmin Zhang
8.1 Introduction
305(2)
8.2 Mathematical model of a quadrotor
307(2)
8.3 NASO-based FTC
309(10)
8.4 Validation
319(4)
8.5 Conclusion
323(1)
References
323(4)
9 Defect detection and classification in welding using deep learning and digital radiography
M-Mahdi Naddaf-Sh
Sadra Naddaf-Sh
Hassan Zargaradeh
Sayyed M. Zahiri
Maxim Dalton
Gabriel Elpers
Amir R. Kashani
9.1 Introduction
327(6)
9.2 Literature review
333(3)
9.3 Database preparation
336(1)
9.4 Experimental study
336(9)
9.5 Experimental implementation
345(1)
9.6 Conclusion
346(1)
References
347(6)
10 Real-time fault diagnosis using deep fusion of features extracted by PeLSTM and CNN
Funa Zhou
Zhiqiang Zhang
Danmin Chen
10.1 Introduction
353(3)
10.2 Basic theory
356(1)
10.3 Deep fusion of feature extracted by PeLSTM and CNN
357(14)
10.4 Experimental testing
371(24)
10.5 Conclusion and future work
395(3)
Acknowledgment
398(1)
References
398(3)
Index 401
Dr. Karimi received the B.Sc. (First Hons.) degree in power systems from the Sharif University of Technology, Tehran, Iran, in 1998, and the M.Sc. and Ph.D. (First Hons.) degrees in control systems engineering from the University of Tehran, Tehran, in 2001 and 2005, respectively. His research interests are in the areas of control systems/theory, mechatronics, networked control systems, intelligent control systems, signal processing, vibration control, ground vehicles, structural control, wind turbine control and cutting processes. He is an Editorial Board Member for some international journals and several Technical Committee. Prof. Karimi has been presented a number of national and international awards, including Alexander-von-Humboldt Research Fellowship Award (in Germany), JSPS Research Award (in Japan), DAAD Research Award (in Germany), August-Wilhelm-Scheer Award (in Germany) and been invited as visiting professor at a number of universities in Germany, France, Italy, Poland, Spain, China, Korea, Japan, India.