Atnaujinkite slapukų nuostatas

Ferroelectricity at the Nanoscale: Basics and Applications 2014 ed. [Kietas viršelis]

  • Formatas: Hardback, 122 pages, aukštis x plotis: 235x155 mm, weight: 3317 g, 8 Illustrations, color; 73 Illustrations, black and white; XII, 122 p. 81 illus., 8 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 06-Nov-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642410065
  • ISBN-13: 9783642410062
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 122 pages, aukštis x plotis: 235x155 mm, weight: 3317 g, 8 Illustrations, color; 73 Illustrations, black and white; XII, 122 p. 81 illus., 8 illus. in color., 1 Hardback
  • Serija: NanoScience and Technology
  • Išleidimo metai: 06-Nov-2013
  • Leidėjas: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642410065
  • ISBN-13: 9783642410062
Kitos knygos pagal šią temą:
The investigation of nanosized ferroelectric films and ferroelectric nanocrystals has attracted much attention during the past 15 – 20 years. There is interest in the fundamental and applied aspects. The theoretical basis is connected with the development of the Landau-Ginzburg-Devonshire (LGD) mean field and the first principles theories to the ultrathin ferroelectric films with thickness in the vicinity of critical size. Important potential applications are possible nanosize ferroelectric films in non-volatile memories, microelectronics, sensors, pyroelectric and electro-optic devices. This new area of research of ferroelectricity is still in impetuous development and far from completion. Many topics elucidated need generalization. The book contains theory and experimental data for a wide range of ferroelectric materials.

This book examines a wide range of ferroelectric materials. It explains the theoretical background of ultrathin ferroelectric films, presents applications of ferroelectric materials, and displays the mechanism of switching of nanosized ferroelectric films.
1 Ferroelectricity and Ferroelectric Phase Transition 1(10)
1.1 Landau-Ginzburg-Devonshire Mean Field Theory
1(5)
1.2 Ab Initio Theory of the Ferroelectric Phase Transition
6(2)
References
8(3)
2 Thin Ferroelectric Films and the Finite-Size Effect 11(6)
References
15(2)
3 Critical Size in Ferroelectricity 17(12)
3.1 LGD Mean Field Theory and Boundary Conditions in the Vicinity of the Critical Size
19(3)
3.2 Ab Initio Theory of the Critical Size
22(1)
3.3 Ginzburg Soft Mode Conception and Ferroelectricity at the Nanoscale
23(3)
3.3.1 Ginzburg Soft Mode Conception
24(1)
3.3.2 Dielectric Resonance Dispersion in the Ultrathin Films
25(1)
References
26(3)
4 Ultrathin Ferroelectric Films 29(38)
4.1 Ferroelectric Polymers Vinylidene Fluoride Copolymers
30(2)
4.2 Langmuir-Blodgett Ferroelectric Films: Critical Size and Coercive Field
32(12)
4.3 Two-Dimensional Ferroelectric Films
44(7)
4.4 Ultrathin Perovskite Films: Critical Size and Coercive Field
51(5)
4.5 The Scaling of the Polarization in the Ultrathin Ferroelectric Films
56(6)
4.5.1 LGD Theory with Mismatched Boundary Conditions in Application to the Scaling Polarization in Ferroelectric Polymers
57(4)
4.5.2 The Scaling of the Polarization in PbTiO3 Superlattices
61(1)
References
62(5)
5 Ferroelectric Nanocrystals and Nanodomains 67(20)
5.1 The Growth and Switching of Perovskite Nanocrystals
67(3)
5.2 The Growth and Switching of Ferroelectric Polymer Nanocrystals
70(4)
5.3 PFM Application and Nanoscale Imaging of Ferroelectric Langmuir-Blodgett Polymer Films
74(5)
5.4 Nanodomains in the Ferroelectric Langmuir-Blodgett Polymer Films
79(5)
References
84(3)
6 Switching Kinetics at the Nanoscale 87(34)
6.1 The Homogeneous Landau-Khalatnikov Switching Kinetics of the Ultrathin Ferroelectrics Films
89(2)
6.2 The Homogeneous Switching in the Ultrathin Ferroelectric Copolymer LB Films
91(11)
6.3 The Homogeneous Intrinsic Switching in the BaTiO3 Condenser at the Nanoscale
102(7)
6.4 The Homogeneous Switching in the Ferroelectric Liquid Crystals
109(1)
6.5 Switching in the Ising Model
110(6)
6.6 Conclusion: Domains and Switching in Ferroelectricity
116(2)
References
118(3)
Index 121