Atnaujinkite slapukų nuostatas

El. knyga: Feynman's Operational Calculus and Beyond: Noncommutativity and Time-Ordering

(Professor of Mathematics, University of California, Riverside), (Professor of Mathematics, Creighton University), (Professor Emeritus, University of Nebraska, Lincoln)
  • Formatas: 368 pages
  • Serija: Oxford Mathematical Monographs
  • Išleidimo metai: 06-Aug-2015
  • Leidėjas: Oxford University Press
  • Kalba: eng
  • ISBN-13: 9780191006883
  • Formatas: 368 pages
  • Serija: Oxford Mathematical Monographs
  • Išleidimo metai: 06-Aug-2015
  • Leidėjas: Oxford University Press
  • Kalba: eng
  • ISBN-13: 9780191006883

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book lies at the interface between mathematics and quantum theory. It provides a mathematically precise development of certain heuristic ideas originated by Richard Feynman in a profoundly influential 1951 paper.

This book is aimed at providing a coherent, essentially self-contained, rigorous and comprehensive abstract theory of Feynman's operational calculus for noncommuting operators. Although it is inspired by Feynman's original heuristic suggestions and time-ordering rules in his seminal 1951 paper An operator calculus having applications in quantum electrodynamics, as will be made abundantly clear in the introduction (Chapter 1) and elsewhere in the text, the theory developed in this book also goes well beyond them in a number of directions which were not anticipated in Feynman's work. Hence, the second part of the main title of this book.

The basic properties of the operational calculus are developed and certain algebraic and analytic properties of the operational calculus are explored. Also, the operational calculus will be seen to possess some pleasant stability properties. Furthermore, an evolution equation and a generalized integral equation obeyed by the operational calculus are discussed and connections with certain analytic Feynman integrals are noted.

This volume is essentially self-contained and we only assume that the reader has a reasonable, graduate level, background in analysis, measure theory and functional analysis or operator theory. Much of the necessary remaining background is supplied in the text itself.
1 Introduction
1(30)
2 Disentangling: Definitions, Properties and Elementary Examples
31(32)
2.1 The Disentangling Algebras
35(4)
2.2 The Disentangling Maps
39(10)
2.3 Simple Examples of Disentangling
49(8)
2.4 The Effects of Commutativity
57(6)
3 Disentangling via Tensor Products and Ordered Supports
63(32)
3.1 Disentangling via Direct Sums and Tensor Products
64(6)
3.2 Nonprobability Measures
70(4)
3.3 Disentangling via Measures with Ordered Supports
74(10)
3.4 Disentangling an Exponential Factor
84(11)
4 Extraction of Multilinear Factors and Iterative Disentangling
95(42)
4.1 Extraction of Linear Factors
97(11)
4.2 Extraction of Bilinear Factors
108(4)
4.3 Extraction of Multilinear Factors
112(3)
4.4 Iterated, but not Multilinear, Disentangling
115(3)
4.5 Consequences and Examples
118(3)
4.6 Appendix: Decomposing Disentangling
121(16)
5 Auxiliary Operations and Disentangling Algebras
137(20)
5.1 The Noncommutative Operations ⊗ and +
138(13)
5.2 Additional Examples of Disentangling Formulas
151(1)
5.3 Relationship to the Disentangling Maps
152(5)
6 Time-Dependent Feynman's Operational Calculus and Evolution Equations
157(72)
6.1 Initial Definitions
160(5)
6.2 The Time Evolution of the Disentangled Exponential Function
165(36)
6.3 The Rigorous Definition of the Disentangling Map in the Presence of an Unbounded Operator: Exponential Factors
201(11)
6.4 A Generalized Integral Equation for Feynman's Operational Calculus
212(17)
7 Stability Properties of Feynman's Operational Calculi
229(32)
7.1 The General Setting for the Stability Theory
235(11)
7.2 Joint Stability: Stability with Respect to the Operators and the Time-Ordering Measures
246(7)
7.3 Stability with Respect to the Operators
253(3)
7.4 Stability with Respect to the Time-Ordering Measures
256(5)
8 Disentangling via Continuous and Discrete Measures
261(52)
8.1 Definitions and Notation
262(4)
8.2 Time-Ordering Monomials
266(3)
8.3 Definition of the Disentangling Map
269(8)
8.4 Examples
277(9)
8.5 Stability Results
286(27)
9 Derivational Derivatives and Feynman's Operational Calculi
313(14)
9.1 Introduction
313(1)
9.2 Disentangling Maps, Homomorphisms and Antihomomorphisms
314(4)
9.3 The Derivation Formula
318(5)
9.4 Higher-Order Expansions
323(4)
10 Spectral Theory for Noncommuting Operators
327(16)
10.1 Introduction
327(1)
10.2 Background Material on Distributions
328(3)
10.3 Functional Calculus for Noncommuting Operators
331(12)
11 Epilogue: Miscellaneous Topics and Possible Extensions
343(12)
11.1 Overview
343(1)
11.2 Open Problems and Future Research Directions
344(11)
References 355(10)
Notation Index 365(2)
Subject Index 367
Gerald W. Johnson is Emeritus Professor of Mathematics University of Nebraska, Lincoln.



Michel Lapidus is Professor of Mathematics at the University of California, Riverside

Lance Nielsen is Professor of Mathematics in the Department of Mathematics, Creighton University.