Atnaujinkite slapukų nuostatas

Fibre Bundles Softcover reprint of the original 3rd ed. 1994 [Minkštas viršelis]

  • Formatas: Paperback / softback, 356 pages, aukštis x plotis: 235x155 mm, weight: 575 g, XX, 356 p., 1 Paperback / softback
  • Serija: Graduate Texts in Mathematics 20
  • Išleidimo metai: 14-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 147572263X
  • ISBN-13: 9781475722635
Kitos knygos pagal šią temą:
  • Formatas: Paperback / softback, 356 pages, aukštis x plotis: 235x155 mm, weight: 575 g, XX, 356 p., 1 Paperback / softback
  • Serija: Graduate Texts in Mathematics 20
  • Išleidimo metai: 14-Dec-2012
  • Leidėjas: Springer-Verlag New York Inc.
  • ISBN-10: 147572263X
  • ISBN-13: 9781475722635
Kitos knygos pagal šią temą:
Fibre bundles play an important role in just about every aspect of modern geometry and topology. Basic properties, homotopy classification, and characteristic classes of fibre bundles have become an essential part of graduate mathematical education for students in geometry and mathematical physics. In this third edition two new chapters on the gauge group of a bundle and on the differential forms representing characteristic classes of complex vector bundles on manifolds have been added. These chapters result from the important role of the gauge group in mathematical physics and the continual usefulness of characteristic classes defined with connections on vector bundles.
1 Preliminaries on Homotopy Theory.- I The General Theory of Fibre
Bundles.- 2 Generalities on Bundles.- 3 Vector Bundles.- 4 General Fibre
Bundles.- 5 Local Coordinate Description of Fibre Bundles.- 6 Change of
Structure Group in Fibre Bundles.- 7 The Gauge Group of a Principal Bundle.-
8 Calculations Involving the Classical Groups.- II Elements of K-Theory.- 9
Stability Properties of Vector Bundles.- 10 Relative K-Theory.- 11 Bott
Periodicity in the Complex Case.- 12 Clifford Algebras.- 13 The Adams
Operations and Representations.- 14 Representation Rings of Classical
Groups.- 15 The Hopf Invariant.- 16 Vector Fields on the Sphere.- III
Characteristic Classes.- 17 Chern Classes and Stiefel-Whitney Classes.- 18
Differentiable Manifolds.- 19 Characteristic Classes and Connections.- 20
General Theory of Characteristic Classes.- Appendix 1 Dolds Theory of Local
Properties of Bundles.- Appendix 2 On the Double Suspension.-
4. Single
Suspension Sequences.-
7. Double Suspension Sequences.