Atnaujinkite slapukų nuostatas

El. knyga: Finite Fields: Normal Bases and Completely Free Elements

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

The central topic of Finite Fields: Normal Bases and Completely Free Elements is the famous Normal Basis Theorem, a classical result from field theory. In the last two decades, normal bases in finite fields have been proved to be very useful for doing arithmetic computations. At present, the algorithmic and explicit construction of such bases has become one of the major research topics in Finite Field Theory. Moreover, the search for such bases also led to a better theoretical understanding of the structure of finite fields.
In addition to interest in arbitrary normal bases, Finite Fields: Normal Bases and Completely Free Elements examines a special class of normal bases whose existence has only been settled more recently. The main problems considered in the present work are the characterization, the enumeration, and the explicit construction of completely free elements in arbitrary finite dimensional extensions over finite fields. Up to now, there is no work done stating whether the universal property of a completely free element can be used to accelerate arithmetic computations in finite fields. Therefore, the present work belongs to Constructive Algebra and constitutes a contribution to the theory of Finite Fields.
This book serves as an excellent reference for researchers in finite fields, and may be used as a text for advanced courses on the subject.

Daugiau informacijos

Springer Book Archives
I. Introduction and Outline.-
1. The Normal Basis Theorem.-
2. A Strengthening of the Normal Basis Theorem.-
3. Preliminaries on Finite Fields.-
4. A Reduction Theorem.-
5. Particular Extensions of Prime Power Degree.-
6. An Outline.- II. Module Structures in Finite Fields.-
7. On Modules over Principal Ideal Domains.-
8. Cyclic Galois Extensions.-
9. Algorithms for Determining Free Elements.-
10. Cyclotomic Polynomials.- III. Simultaneous Module Structures.-
11. Subgroups Respecting Various Module Structures.-
12. Decompositions Respecting Various Module Structures.-
13. Extensions of Prime Power Degree (1).- IV. The Existence of Completely Free Elements.-
14. The Two-Field-Problem.-
15. Admissability.-
16. Extendability.-
17. Extensions of Prime Power Degree (2).- V. A Decomposition Theory.-
18. Suitable Polynomials.-
19. Decompositions of Completely Free Elements.-
20. Regular Extensions.-
21. Enumeration.- VI. Explicit Constructions.-
22. Strongly Regular Extensions.-
23. Exceptional Cases.-
24. Constructions in Regular Extensions.-
25. Product Constructions.-
26. Iterative Constructions.-
27. Polynomial Constructions.- References.- List of Symbols.