Atnaujinkite slapukų nuostatas

El. knyga: Finiteness Properties of Arithmetic Groups Acting on Twin Buildings

  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2109
  • Išleidimo metai: 16-Jul-2014
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319064772
  • Formatas: PDF+DRM
  • Serija: Lecture Notes in Mathematics 2109
  • Išleidimo metai: 16-Jul-2014
  • Leidėjas: Springer International Publishing AG
  • Kalba: eng
  • ISBN-13: 9783319064772

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Providing an accessible approach to a special case of the Rank Theorem, the present text considers the exact finiteness properties of S-arithmetic subgroups of split reductive groups in positive characteristic when S contains only two places. While the proof of the general Rank Theorem uses an involved reduction theory due to Harder, by imposing the restrictions that the group is split and that S has only two places, one can instead make use of the theory of twin buildings.

Basic Definitions and Properties.- Finiteness Properties of G(Fq[ t]).- Finiteness Properties of G(Fq[ t; t -1 ]).- Affine Kac-Moody Groups.- Adding Places.
1 Basic Definitions and Properties
1(44)
1.1 Metric Spaces
1(6)
1.1.1 Geodesies
1(1)
1.1.2 Products and Joins
2(1)
1.1.3 Model Spaces
3(1)
1.1.4 CAT(k)-Spaces
3(1)
1.1.5 Polyhedral Complexes
4(2)
1.1.6 Links
6(1)
1.1.7 Visual Boundary
7(1)
1.2 Spherical Geometry
7(6)
1.2.1 Spherical Triangles
8(1)
1.2.2 Decomposing Spherical Simplices
9(2)
1.2.3 Spherical Polytopes with Non-obtuse Angles
11(2)
1.3 Finiteness Properties
13(4)
1.4 Simplicial Morse Theory
17(1)
1.5 Number Theory
18(5)
1.5.1 Valuations
19(1)
1.5.2 Discrete Valuations
20(1)
1.5.3 Local Fields
21(1)
1.5.4 S-Integers
22(1)
1.6 Affine Varieties and Linear Algebraic Groups
23(6)
1.6.1 Affine Varieties
23(1)
1.6.2 Linear Algebraic Groups
24(5)
1.6.3 S-Arithmetic Groups
29(1)
1.7 Buildings
29(11)
1.7.1 Spherical Coxeter Complexes
30(2)
1.7.2 Euclidean Coxeter Complexes
32(2)
1.7.3 General Coxeter Complexes
34(1)
1.7.4 Buildings
34(4)
1.7.5 Twin Buildings
38(2)
1.8 Buildings and Groups
40(2)
1.8.1 BN-Pairs
40(1)
1.8.2 Twin BN-Pairs
41(1)
1.8.3 BN-Pairs of Groups over Local Fields
41(1)
1.9 Affine Kac-Moody Groups
42(3)
2 Finiteness Properties of G(Fq[ t])
45(36)
2.1 Hemisphere Complexes
46(2)
2.2 Metric Codistance
48(1)
2.3 Height: A First Attempt
49(3)
2.4 Zonotopes
52(4)
2.5 Height
56(3)
2.6 Flat Cells and the Angle Criterion
59(2)
2.7 Secondary Height: The Game of Moves
61(9)
2.7.1 Proof of Proposition 2.31 Using Spherical Geometry
67(2)
2.7.2 Proof of Proposition 2.31 Using Coxeter Diagrams
69(1)
2.8 The Morse Function
70(2)
2.9 More Spherical Subcomplexes of Spherical Buildings
72(1)
2.10 Descending Links
73(5)
2.11 Proof of the Main Theorem for G(q[ t])
78(3)
3 Finiteness Properties of G(Fq[ t,t-1])
81(18)
3.1 Height
82(3)
3.2 Flat Cells and the Angle Criterion
85(1)
3.3 The Morse Function
86(1)
3.4 Beyond Twin Apartments
87(5)
3.5 Descending Links
92(4)
3.6 Proof of the Main Theorem for G(Fq[ t,t-1])
96(3)
A Adding Places 99(2)
References 101(6)
Index of Symbols 107(2)
Index 109