Preface to the Second Edition |
|
ix | |
|
1 A Visual and Historical Tour |
|
|
1 | (16) |
|
1.1 Images from Dynamical Systems |
|
|
1 | (3) |
|
1.2 A Brief History of Dynamics |
|
|
4 | (13) |
|
2 Examples of Dynamical Systems |
|
|
17 | (8) |
|
2.1 An Example from Finance |
|
|
17 | (1) |
|
2.2 An Example from Ecology |
|
|
18 | (2) |
|
2.3 Finding Roots and Solving Equations |
|
|
20 | (2) |
|
2.4 Differential Equations |
|
|
22 | (3) |
|
|
25 | (12) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
27 | (3) |
|
|
30 | (1) |
|
3.5 The Doubling Function |
|
|
31 | (2) |
|
3.6 Experiment: The Computer May Lie |
|
|
33 | (4) |
|
|
37 | (8) |
|
|
37 | (2) |
|
|
39 | (2) |
|
|
41 | (4) |
|
5 Fixed and Periodic Points |
|
|
45 | (16) |
|
5.1 A Fixed Point Theorem |
|
|
45 | (1) |
|
5.2 Attraction and Repulsion |
|
|
46 | (1) |
|
5.3 Calculus of Fixed Points |
|
|
47 | (3) |
|
|
50 | (5) |
|
|
55 | (2) |
|
5.6 Experiment: Rates of Convergence |
|
|
57 | (4) |
|
|
61 | (18) |
|
6.1 Dynamics of the Quadratic Map |
|
|
61 | (4) |
|
6.2 The Saddle-Node Bifurcation |
|
|
65 | (4) |
|
6.3 The Period-Doubling Bifurcation |
|
|
69 | (4) |
|
6.4 Experiment: The Transition to Chaos |
|
|
73 | (6) |
|
|
79 | (12) |
|
|
79 | (2) |
|
|
81 | (4) |
|
7.3 The Cantor Middle-Thirds Set |
|
|
85 | (6) |
|
|
91 | (14) |
|
|
91 | (5) |
|
8.2 The Period-Doubling Route to Chaos |
|
|
96 | (1) |
|
8.3 Experiment: Windows in the Orbit Diagram |
|
|
97 | (8) |
|
|
105 | (16) |
|
|
105 | (1) |
|
|
106 | (5) |
|
|
111 | (2) |
|
|
113 | (8) |
|
|
121 | (18) |
|
10.1 Three Properties of a Chaotic System |
|
|
121 | (6) |
|
10.2 Other Chaotic Systems |
|
|
127 | (5) |
|
10.3 Manifestations of Chaos |
|
|
132 | (2) |
|
10.4 Experiment: Feigenbaum's Constant |
|
|
134 | (5) |
|
|
139 | (20) |
|
11.1 Period 3 Implies Chaos |
|
|
139 | (3) |
|
11.2 Sharkovsky's Theorem |
|
|
142 | (5) |
|
|
147 | (4) |
|
11.4 Subshifts of Finite Type |
|
|
151 | (8) |
|
12 Role of the Critical Point |
|
|
159 | (10) |
|
12.1 The Schwarzian Derivative |
|
|
159 | (3) |
|
12.2 Critical Points and Basins of Attraction |
|
|
162 | (7) |
|
|
169 | (12) |
|
|
169 | (4) |
|
13.2 Convergence and Nonconvergence |
|
|
173 | (8) |
|
|
181 | (30) |
|
|
181 | (2) |
|
14.2 The Cantor Set Revisited |
|
|
183 | (1) |
|
14.3 The Sierpinski Triangle |
|
|
184 | (2) |
|
14.4 The Sierpinski Carpet |
|
|
186 | (4) |
|
|
190 | (2) |
|
14.6 Topological Dimension |
|
|
192 | (2) |
|
|
194 | (3) |
|
14.8 Iterated Function Systems |
|
|
197 | (7) |
|
14.9 Experiment: Find the Iterated Function Systems |
|
|
204 | (1) |
|
14.10 Experiment: A "Real" Chaos Game |
|
|
205 | (6) |
|
|
211 | (18) |
|
|
211 | (4) |
|
15.2 Complex Square Roots |
|
|
215 | (3) |
|
15.3 Linear Complex Functions |
|
|
218 | (2) |
|
15.4 Calculus of Complex Functions |
|
|
220 | (9) |
|
|
229 | (22) |
|
16.1 The Squaring Function |
|
|
229 | (4) |
|
16.2 Another Chaotic Quadratic Function |
|
|
233 | (2) |
|
|
235 | (5) |
|
16.4 Computing the Filled Julia Set |
|
|
240 | (5) |
|
16.5 Experiment: Filled Julia Sets and Critical Orbits |
|
|
245 | (1) |
|
16.6 The Julia Set as a Repeller |
|
|
246 | (5) |
|
|
251 | (30) |
|
17.1 The Fundamental Dichotomy |
|
|
251 | (3) |
|
|
254 | (3) |
|
17.3 Complex Bifurcations |
|
|
257 | (6) |
|
17.4 Experiment: Periods of the Bulbs |
|
|
263 | (2) |
|
17.5 Experiment: Periods of the Other Bulbs |
|
|
265 | (1) |
|
17.6 Experiment: How to Add |
|
|
266 | (1) |
|
17.7 Experiment: Find the Julia Set |
|
|
267 | (2) |
|
17.8 Experiment: Similarity of the Mandelbrot Set and Julia Sets |
|
|
269 | (12) |
|
18 Other Complex Dynamical Systems |
|
|
281 | (24) |
|
|
281 | (2) |
|
|
283 | (8) |
|
18.3 Exponential Functions |
|
|
291 | (7) |
|
18.4 Trigonometric Functions |
|
|
298 | (2) |
|
18.5 Complex Newton's Method |
|
|
300 | (5) |
|
A Mathematical Preliminaries |
|
|
305 | (8) |
|
|
305 | (3) |
|
A.2 Some Ideas from Calculus |
|
|
308 | (1) |
|
|
309 | (2) |
|
A.4 Other Topological Concepts |
|
|
311 | (2) |
Bibliography |
|
313 | (4) |
Index |
|
317 | |