|
|
1 | (4) |
|
2 Fixed Point Theory in Metric Spaces: An Introduction |
|
|
5 | (42) |
|
2.1 Banach Contraction Principle |
|
|
5 | (2) |
|
2.2 Pointwise Lipschitzian Mappings |
|
|
7 | (5) |
|
2.3 Caristi-Ekeland Extension |
|
|
12 | (1) |
|
|
13 | (2) |
|
2.4.1 ODE and Integral Equations |
|
|
13 | (1) |
|
2.4.2 Cantor and Fractal sets |
|
|
14 | (1) |
|
2.5 Metric Fixed Point Theory in Banach Spaces |
|
|
15 | (16) |
|
2.5.1 Classical Existence Results |
|
|
16 | (3) |
|
2.5.2 The Normal Structure Property |
|
|
19 | (4) |
|
2.5.3 The Demiclosedness Principle |
|
|
23 | (2) |
|
2.5.4 Opial and Kadec-Klee Properties |
|
|
25 | (6) |
|
2.6 Ishikawa and Mann Iterations in Banach spaces |
|
|
31 | (3) |
|
2.7 Metric Convexity and Convexity Structures |
|
|
34 | (3) |
|
2.8 Uniformly Convex Metric Spaces |
|
|
37 | (6) |
|
2.9 More on Convexity Structures |
|
|
43 | (1) |
|
|
44 | (3) |
|
3 Modular Function Spaces |
|
|
47 | (32) |
|
|
47 | (11) |
|
3.2 Space Ep, Convergence Theorems, and Vitali Property |
|
|
58 | (7) |
|
3.3 An Equivalent Topology |
|
|
65 | (2) |
|
3.4 Compactness and Separability |
|
|
67 | (2) |
|
|
69 | (2) |
|
3.6 Generalizations and Special Cases |
|
|
71 | (8) |
|
3.6.1 General Definition of Function Modular |
|
|
71 | (1) |
|
3.6.2 Nonlinear Operator Valued Measures |
|
|
72 | (3) |
|
3.6.3 Nonlinear Fourier Transform |
|
|
75 | (4) |
|
4 Geometry of Modular Function Spaces |
|
|
79 | (32) |
|
4.1 Uniform Convexity in Modular Function Spaces |
|
|
79 | (9) |
|
4.2 Parallelogram Inequality and Minimizing Sequence Property |
|
|
88 | (3) |
|
4.3 Uniform Noncompact Convexity in Modular Function Spaces |
|
|
91 | (7) |
|
4.4 Opial and Kadec--Klee Properties |
|
|
98 | (13) |
|
5 Fixed Point Existence Theorems in Modular Function Spaces |
|
|
111 | (60) |
|
|
111 | (3) |
|
5.2 Contractions in Modular Function Spaces |
|
|
114 | (7) |
|
5.2.1 Banach Contraction Principle in Modular Function Spaces |
|
|
114 | (2) |
|
5.2.2 Case of Uniformly Continuous Function Modulars |
|
|
116 | (2) |
|
5.2.3 Case of Modular Function Spaces with Strong Opial Property |
|
|
118 | (1) |
|
5.2.4 Quasi-Contraction Mappings in Modular Function Spaces |
|
|
118 | (3) |
|
5.3 Nonexpansive and Pointwise Asymptotic Nonexpansive Mappings |
|
|
121 | (42) |
|
5.3.1 Case of Uniformly Convex Function Modulars |
|
|
121 | (6) |
|
5.3.2 Normal Structure Property in Modular Function Spaces |
|
|
127 | (7) |
|
5.3.3 Case of Uniformly Lipschitzian Mappings |
|
|
134 | (12) |
|
5.3.4 Common Fixed Point Theorems in Modular Function Spaces |
|
|
146 | (7) |
|
5.3.5 Asymptotic Nonexpansive Mappings in Modular Function Spaces Satisfying Δ2-type Condition |
|
|
153 | (6) |
|
5.3.6 KKM and Ky Fan Theorems in Modular Function Spaces |
|
|
159 | (4) |
|
5.4 Applications to Differential Equations |
|
|
163 | (8) |
|
6 Fixed Point Construction Processes |
|
|
171 | (14) |
|
|
171 | (1) |
|
6.2 Demiclosedness Principle |
|
|
172 | (3) |
|
6.3 Generalized Mann Iteration Process |
|
|
175 | (5) |
|
6.4 Generalized Ishikawa Iteration Process |
|
|
180 | (4) |
|
|
184 | (1) |
|
7 Semigroups of Nonlinear Mappings in Modular Function Spaces |
|
|
185 | (34) |
|
|
185 | (1) |
|
7.2 Fixed Point Existence for Semigroups of Nonexpansive Mappings |
|
|
186 | (4) |
|
7.3 Characterization of the Set of Common Fixed Points |
|
|
190 | (8) |
|
7.4 Convergence of Mann Iteration Processes |
|
|
198 | (4) |
|
7.5 Convergence of Ishikawa Iteration Processes |
|
|
202 | (3) |
|
7.6 Applications to Differential Equations |
|
|
205 | (6) |
|
7.7 Asymptotic Pointwise Nonexpansive Semigroups |
|
|
211 | (8) |
|
|
219 | (24) |
|
|
219 | (4) |
|
8.2 Banach Contraction Principle in Modular Metric Spaces |
|
|
223 | (7) |
|
8.3 Nonexpansive Mappings in Modular Metric Spaces |
|
|
230 | (13) |
|
|
235 | (8) |
Index |
|
243 | |