Atnaujinkite slapukų nuostatas

El. knyga: Flat Rank Two Vector Bundles on Genus Two Curves

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"We study the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles (including unstable bundles), for which we compute a natural Lagrangian rational section. As a particularity of the genus 2 case, connections as above are invariant under the hyperelliptic involution: they descend as rank 2 logarithmic connections over the Riemann sphere. We establish explicit links between the well-known moduli space of the underlying parabolic bundles with the classical approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allows us to explain a certain number of geometric phenomena in the considered moduli spaces such as the classical (16, 6)-configuration of the Kummer surface. We also recover a Poincarape family due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles and compare the Hitchin Hamiltonians with those found by van Geemen-Previato. We explicitly describe the isomonodromic foliation in the moduli space of vector bundles with sl2-connection over curves of genus 2 and prove the transversality of the induced flow with the locus of unstable bundles"--

Heu (University of Strasbourg) and Loray (University of Rennes) examine the moduli space of trace-free irreducible rank 2 connections over a curve of genus 2 and the forgetful map towards the moduli space of underlying vector bundles, for which they compute a natural Lagrangian rational section. The monograph explicitly computes the Hitchin integrable system on the moduli space of Higgs bundles, compares the Hitchin Hamiltonians with those found by van Geemen-Previato, and prove the transversality of the induced flow with the locus of unstable bundles. Annotation ©2019 Ringgold, Inc., Portland, OR (protoview.com)
Introduction 1(6)
Chapter 1 Preliminaries on connections
7(4)
1.1 Logarithmic connections
7(1)
1.2 Twists and trace
7(1)
1.3 Projective connections and Riccati foliations
8(1)
1.4 Parabolic structures
8(1)
1.5 Elementary transformations
8(2)
1.6 Stability and moduli spaces
10(1)
Chapter 2 Hyperelliptic correspondence
11(8)
2.1 Topological considerations
12(4)
2.2 A direct algebraic approach
16(3)
Chapter 3 Flat vector bundles over X
19(16)
3.1 Flatness criterion
19(1)
3.2 Semi-stable bundles and the Narasimhan-Ramanan theorem
20(1)
3.3 Semi-stable decomposable bundles
21(3)
3.4 Semi-stable indecomposable bundles
24(2)
3.5 Unstable and indecomposable: the 6+10 Gunning bundles
26(2)
3.6 Computation of a system of coordinates
28(7)
Chapter 4 Anticanonical subbundles
35(14)
4.1 Tyurin subbundles
35(7)
4.2 Extensions of the canonical bundle
42(1)
4.3 Tyurin parametrization
43(6)
Chapter 5 Flat parabolic vector bundles over the quotient X/l
49(24)
5.1 Flatness criterion
49(2)
5.2 Dictionary: how special bundles on X occur as special bundles on X/l
51(7)
5.3 Semi-stable bundles and projective charts
58(7)
5.4 Moving weights and wall-crossing phenomena
65(4)
5.5 Galois and Geiser involutions
69(1)
5.6 Summary: the moduli stack Bun(X)
70(3)
Chapter 6 The moduli stack iggs(X) and the Hitchin fibration
73
6.1 A Poincare family on the 2-fold cover iggs(X/l)
74(1)
6.2 The Hitchin fibration
75(1)
6.3 Explicit Hitchin Hamiltonians on iggs(X/l)
76(1)
6.4 Explicit Hitchin Hamiltonians on iggs(X)
77(3)
6.5 Comparison to existing formulae
80
Viktoria Heu, Institut de Recherche Mathematique Avancee (IRMA), Strasbourg, France.

Frank Loray, Institut de Recherche Mathematique de Rennes (IRMAR), France.