Contributors |
|
ix | |
Preface |
|
xiii | |
|
1 Bayesian quantile regression with the asymmetric Laplace distribution |
|
|
1 | (26) |
|
|
|
|
|
1 | (2) |
|
1.2 The asymmetric Laplace distribution for quantile regression |
|
|
3 | (13) |
|
1.3 On coverage probabilities |
|
|
16 | (2) |
|
1.4 Postprocessing for multiple fittings |
|
|
18 | (4) |
|
1.5 Final remarks and conclusion |
|
|
22 | (1) |
|
|
23 | (4) |
|
2 A vignette on model-based quantile regression: analysing excess zero response |
|
|
27 | (38) |
|
|
|
|
|
28 | (2) |
|
2.2 Excess zero regression analysis |
|
|
30 | (1) |
|
2.3 Case study data and objective |
|
|
31 | (1) |
|
2.4 Fitting single covariate basal area models |
|
|
32 | (5) |
|
2.5 Interpreting quantile regressions |
|
|
37 | (4) |
|
2.6 Assessing model assumptions and making improvements |
|
|
41 | (6) |
|
2.7 Prediction and interpreting predicted responses |
|
|
47 | (3) |
|
2.8 Fitting multiple regression basal area models |
|
|
50 | (12) |
|
2.9 Conclusions and final remarks |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (2) |
|
3 Bayesian nonparametric density regression for ordinal responses |
|
|
65 | (26) |
|
|
|
|
65 | (3) |
|
3.2 Bayesian nonparametric density regression |
|
|
68 | (5) |
|
3.3 Mixture modelling for ordinal responses |
|
|
73 | (13) |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (4) |
|
4 Bayesian non para metric methods for financial and macroeconomic time series analysis |
|
|
91 | (30) |
|
|
|
91 | (2) |
|
4.2 Bayesian nonparametric methods for the innovation distribution in volatility models |
|
|
93 | (5) |
|
4.3 Bayesian nonparametric methods for long-range dependence in SV models |
|
|
98 | (7) |
|
4.4 Bayesian nonparametric methods for the analysis of macroeconomic time series |
|
|
105 | (9) |
|
|
114 | (1) |
|
|
115 | (6) |
|
5 Bayesian mixed binary-continuous copula regression with an application to childhood undernutrition |
|
|
121 | (32) |
|
|
|
|
|
|
121 | (4) |
|
5.2 Bivariate copula models with mixed binary-continuous marginals |
|
|
125 | (7) |
|
|
132 | (6) |
|
5.4 Model selection and model evaluation |
|
|
138 | (4) |
|
|
142 | (5) |
|
5.6 Summary and discussion |
|
|
147 | (2) |
|
|
149 | (1) |
|
|
149 | (4) |
|
6 Nonstandard flexible regression via variational Bayes |
|
|
153 | (34) |
|
|
|
154 | (2) |
|
6.2 Preparatory modelling components |
|
|
156 | (7) |
|
6.3 A standard semiparametric regression model |
|
|
163 | (2) |
|
6.4 Robust nonparametric regression |
|
|
165 | (5) |
|
6.5 Generalised additive model with heteroscedastic variance |
|
|
170 | (3) |
|
6.6 Generalised additive negative binomial model |
|
|
173 | (4) |
|
6.7 Logistic regression with missing covariates |
|
|
177 | (5) |
|
|
182 | (1) |
|
|
183 | (1) |
|
|
183 | (4) |
|
7 Scalable Bayesian variable selection regression models for count data |
|
|
187 | (34) |
|
|
|
|
|
|
|
188 | (1) |
|
7.2 Bayesian variable selection via spike-and-slab priors |
|
|
189 | (1) |
|
7.3 Negative binomial regression models |
|
|
190 | (10) |
|
7.4 Dirichlet-multinomial regression models |
|
|
200 | (6) |
|
|
206 | (6) |
|
7.6 Benchmark applications |
|
|
212 | (3) |
|
|
215 | (1) |
|
|
216 | (5) |
|
8 Bayesian spectral analysis regression |
|
|
221 | (30) |
|
|
|
|
221 | (2) |
|
|
223 | (4) |
|
8.3 Bayesian spectral analysis regression |
|
|
227 | (7) |
|
|
234 | (3) |
|
8.5 Nonnormal distributions |
|
|
237 | (1) |
|
|
238 | (7) |
|
|
245 | (1) |
|
|
246 | (1) |
|
|
246 | (5) |
|
9 Flexible regression modelling under shape constraints |
|
|
251 | (30) |
|
|
|
|
|
252 | (1) |
|
9.2 Orthonormal design matrices |
|
|
253 | (1) |
|
9.3 Monotonic polynomial model |
|
|
254 | (7) |
|
|
261 | (17) |
|
|
278 | (1) |
|
|
278 | (3) |
Index |
|
281 | |