Atnaujinkite slapukų nuostatas

El. knyga: Flexible Electronics: Materials and Applications

Edited by , Edited by
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Flexible-electronics is rapidly finding many main-stream applications where low-cost, ruggedness, light weight, unconventional form factors and ease of manufacturability are just some of the important advantages over their conventional rigid-substrate counterparts. Flexible Electronics: Materials and Applications surveys the materials systems and processes that are used to fabricate devices that can be employed in a wide variety of applications, including flexible flat-panel displays, medical image sensors, photovoltaics, and electronic paper. Materials discussed range from polymeric semiconductors to nanotube transparent conductors, highlighting the important characteristics of each system and their target applications. An overview of the performance benchmarks for the different materials is given in order to allow a direct comparison of these different technologies. Furthermore, the devices and processes most suitable for given applications in flexible electronics are identified.





Topics covered include:















An overview and history of flexible electronics













Novel materials for solution-processable thin-film electronic devices and their properties













Low-temperature processing of conventional materials and devices on plastic foils













Novel techniques, such as printing and roll-to-roll processing, for large-area flexible electronics manufacturing













Materials and device physics relevant to flexible electronics













Device integration on flexible substrates













Mechanical and electronic characteristics for thin-film transistors and nano-scale transparent conductors on flexible platforms













Applications towards flexible displays, sensors, actuators, solar energy, radio-frequency identification, and micro-electro-mechanical systems















Written by leading researchers in the field, Flexible Electronics: Materials and Applications serves as a reference for researchers, engineers, and students interested in the characteristics, capabilities, and limitations of these exciting materials and emerging applications.
Overview of Flexible Electronics Technology
1(28)
I-Chun Cheng
Sigurd Wagner
History of Flexible Electronics
1(2)
Materials for Flexible Electronics
3(15)
Degrees of Flexibility
3(2)
Substrates
5(3)
Backplane Electronics
8(4)
Frontplane Technologies
12(4)
Encapsulation
16(2)
Fabrication Technology for Flexible Electronics
18(2)
Fabrication on Sheets by Batch Processing
18(1)
Fabrication on Web by Roll-to-Roll Processing
19(1)
Additive Printing
20(1)
Outlook
20(9)
References
20(9)
Mechanical Theory of the Film-on-Substrate-Foil Structure: Curvature and Overlay Alignment in Amorphous Silicon Thin-Film Devices Fabricated on Free-Standing Foil Substrates
29(24)
Helena Gleskova
I-Chun Cheng
Sigurd Wagner
Zhigang Suo
Introduction
29(3)
Theory
32(4)
The Built-in Strain εbi
35(1)
Applications
36(14)
Strain in the Substrate, εs(Td), and the Film, εf(Td), at the Deposition Temperature Td
36(2)
Strain in the Substrate, εs(Tr), and the Film, εf(Tr), at Room Temperature Tr
38(4)
Radius of Curvature R of the Workpiece
42(4)
Strain of the Substrate and the Curvature of the Workpiece for a Three-Layer Structure
46(1)
Experimental Results for a-Si:H TFTs Fabricated on Kapton
47(3)
Conclusionss
50(3)
References
50(3)
Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors
53(22)
Andrei Sazonov
Denis Striakhilev
Arokia Nathan
Introduction
53(2)
Low-temperature Amorphous and Nanocrystalline Silicon Materials
55(2)
Fundamental Issues for Low-temperature Processing
55(1)
Low-temperature Amorphous Silicon
56(1)
Low-temperature Nanocrystalline Silicon
56(1)
Low-temperature Dielectrics
57(2)
Characteristics of Low-temperature Dielectric Thin-film Deposition
57(1)
Low-temperature Silicon Nitride Characteristics
57(1)
Low-temperature Silicon Oxide Characteristics
58(1)
Low-temperature Thin-film Transistor Devices
59(8)
Device Structures and Materials Processing
60(1)
Low-temperature a-Si:H Thin-Film Transistor Device Performance
61(1)
Contacts to a-Si:H Thin-film Transistors
62(2)
Low-temperature Doped nc-Si Contacts
64(2)
Low-temperature nc-Si TFTs
66(1)
Device Stability
67(3)
Conclusions and Future Prospective
70(5)
References
70(5)
Amorphous Silicon: Flexible Backplane and Display Application
75(32)
Kalluri R. Sarma
Introduction
75(1)
Enabling Technologies for Flexible Backplanes and Displays
76(15)
Flexible Substrate Technologies
76(6)
TFT Technologies for Flexible Backplanes
82(7)
Display Media for Flexible Displays (LCD, Reflective-EP, OLED)
89(1)
Barrier Layers
90(1)
Flexible Active Matrix Backplane Requirements for OLED Displays
91(4)
Active Matrix Addressing
92(3)
Flexible AMOLED Displays Using a-Si TFT Backplanes
95(7)
Backplane Fabrication Using PEN Plastic Substrates
95(3)
Flexible OLED Display Fabrication
98(2)
Flexible AMOLED Display Fabrication with Thin-film Encapsulation
100(2)
Flexible Electrophoretic Displays Fabricated using a-Si TFT Backplanes
102(1)
Outlook for Low-Temperature a-Si TFT for Flexible Electronics Manufacturing
102(5)
References
105(2)
Flexible Transition Metal Oxide Electronics and Imprint Lithography
107(36)
Warren B. Jackson
Introduction
107(1)
Previous Work
108(5)
Properties of Transistor Materials
113(4)
Semiconductors
113(2)
Dielectrics
115(1)
Contact Materials
116(1)
Device Structures
117(2)
Fabrication on Flexible Substrates
119(9)
Imprint Lithography
120(2)
Self-Aligned Imprint Lithography
122(4)
SAIL Transistor Results
126(1)
Summary of Imprint Lithography
127(1)
Flexible TMO Device Results
128(5)
Future Problems and Areas of Research
133(5)
Carrier Density Control
134(1)
Low-Temperature Dielectrics
135(1)
Etching of TMO Materials
135(1)
P-type TMO
136(1)
Stability
136(1)
Flexure and Adhesion of TMO
137(1)
Flexible Fabrication Method Yields
137(1)
Summary
138(5)
References
139(4)
Materials and Novel Patterning Methods for Flexible Electronics
143(40)
William S. Wong
Michael L. Chabinyc
Tse-Nga Ng
Alberto Salleo
Introduction
143(2)
Materials Considerations for Flexible Electronics
145(5)
Overview
145(1)
Inorganic Semiconductors and Dielectrics
145(1)
Organic Semiconductors and Dielectrics
146(3)
Conductors
149(1)
Print-Processing Options for Device Fabrication
150(7)
Overview
150(1)
Control of Feature Sizes of Jet-Printed Liquids
151(2)
Jet-Printing for Etch-Mask Patterning
153(1)
Methods for Minimizing Feature Size
154(2)
Printing Active Materials
156(1)
Performance and Characterization of Electronic Devices
157(13)
Overview
157(1)
Bias Stress in Organic Thin-Film Transistors
158(5)
Nonideal Scaling of Short-Channel Organic TFTs
163(2)
Low-Temperature a-Si:H TFT Device Stability
165(2)
Low-temperature a-Si:H p-i-n Devices
167(3)
Printed Flexible Electronics
170(6)
Overview
170(1)
Digital Lithography for Flexible Image Sensor Arrays
170(2)
Printed Organic Backplanes
172(4)
Conclusions and Future Prospects
176(7)
References
176(7)
Sheet-Type Sensors and Actuators
183(32)
Takao Someya
Introduction
183(1)
Sheet-type Image Scanners
184(17)
Imaging Methods
185(1)
Device Structure and Manufacturing Process
186(4)
Electronic Performance of Organic Photodiodes
190(1)
Organic Transistors
191(2)
Photosensor Cells
193(2)
Issues Related to Device Processes: Pixel Stability and Resolution
195(1)
A Hierarchal Approach for Slow Organic Circuits
196(1)
The Double-Wordline and Double-Bitline Structure
196(3)
A New Dynamic Second-Wordline Decoder
199(1)
Higher Speed Operation with Lower Power Consumption
199(1)
New Applications and Future Prospects
200(1)
Sheet-Type Braille Displays
201(11)
Manufacturing Process
201(3)
Electronic Performance of Braille Cells
204(6)
Organic Transistor-based SRAM
210(1)
Reading Tests
211(1)
Future Prospects
212(1)
Summary
212(3)
References
213(2)
Organic and Polymeric TFTs for Flexible Displays and Circuits
215(46)
Michael G. Kane
Introduction
215(1)
Important Organic TFT Parameters for Electronic Systems
216(11)
Field-Effect Mobility
216(3)
Threshold Voltage
219(1)
Subthreshold Swing
220(2)
Leakage Currents
222(1)
Contact Resistance
222(1)
Capacitances and Frequency Response
223(2)
TFT Nonuniformity
225(1)
Bias-Stress Instability and Hysteresis
225(2)
Active Matrix Displays
227(9)
Introduction
227(1)
Liquid Crystal and Electrophoretic Displays
228(8)
Active Matrix OLED Displays
236(6)
Introduction
236(6)
Using Organic TFTs for Electronic Circuits
242(14)
Thin-Film Transistor Circuits
242(4)
Frequency Limitations of OTFTs
246(1)
Integrated Display Drivers
247(1)
Radio Frequency Identification Tags
248(8)
Conclusion
256(5)
References
256(5)
Semiconducting Polythiophenes for Field-Effect Transistor Devices in Flexible Electronics: Synthesis and Structure Property Relationships
261(36)
Martin Heeney
Iain McCulloch
Introduction
261(3)
Polymerization of Thiophene Monomers
264(9)
General Considerations
264(1)
Synthetic Routes for the Preparation of Thiophene Polymers
264(9)
Poly(3-Alkylthiophenes)
273(6)
Electrical Properties
275(1)
Thin-film Device Processing and Morphology
276(1)
Doping and Oxidative Stability
277(2)
Polythiophene Structural Analogues
279(7)
Thienothiophene Polymers
286(6)
Poly(Thieno(2,3-b)Thiophenes)
286(2)
Poly(Thieno(3,2-b)Thiophenes)
288(4)
Summary
292(5)
References
293(4)
Solution Cast Films of Carbon Nanotubes for Transparent Conductors and Thin Film Transistors
297(32)
David Hecht
George Gruner
Introduction: Nanoscale Carbon for Electronics, the Value Proposition
297(1)
Carbon NT Film Properties
298(7)
Carbon Nanotubes: The Building Blocks
298(1)
Carbon Nanotube Network as an Electronic Material
298(2)
Electrical and Optical Properties of NT Films
300(4)
Doping and Chemical Functionalization
304(1)
Fabrication Technologies
305(4)
Solubilization
306(1)
Deposition
306(3)
Carbon NT Films as Conducting and Optically Transparent Material
309(4)
Network Properties: Sheet Conductance and Optical Transparency
309(3)
Applications: ITO Replacement
312(1)
Challenges and the Path Forward
312(1)
TFTs with Carbon Nanotube Conducting Channels
313(11)
Device Characteristics
314(2)
Device Parameters
316(7)
Challenges and the Path Forward
323(1)
Conclusions
324(5)
References
325(4)
Physics and Materials Issues of Organic Photovoltaics
329(44)
Shawn R. Scully
Michael D. McGehee
Introduction
329(1)
Basic Operation
329(3)
Photocurrent
331(1)
Dark Current
331(1)
Organic and Hybrid Solar Cell Architectures
332(2)
Materials
334(1)
Light Absorption
334(4)
Exciton Harvesting
338(11)
Effects of Disorder
340(4)
Extrinsic Defects
344(1)
Measuring Exciton Harvesting
344(3)
Approaches to Overcome Small Diffusion Lengths
347(2)
Exciton Dissociation
349(2)
Dissociating Geminate Pairs
351(4)
Heterojunction Energy Offsets
355(2)
Charge Transport and Recombination
357(7)
Diffusion-Limited Recombination
359(1)
Interface-Limited (Back Transfer Limited) Recombination
360(3)
Measurements Relevant for Extracting Charge
363(1)
Nanostructures
364(3)
Efficiency Limits and Outlook
367(6)
References
368(5)
Bulk Heterojunction Solar Cells for Large-Area PV Fabrication on Flexible Substrates
373(40)
C. Waldauf
G. Dennler
P. Schilinsky
C. J. Brabec
Introduction and Motivation
373(4)
Photovoltaics
373(1)
Technology Overview
374(1)
Motivation for Large-Area, Solution-Processable Photovoltaics
375(2)
The Concept of Bulk Heterojunction Solar Cells
377(24)
Basics of Organic Solar Cell Materials
377(1)
Fundamentals of Photovoltaics
378(7)
Understanding and Optimization of BHJ Composites
385(16)
Challenges for Large-Area Processing
401(7)
Production Scheme
401(3)
Encapsulation of Flexible Solar Cells
404(4)
Conclusions
408(5)
References
409(4)
Substrates and Thin-Film Barrier Technology for Flexible Electronics
413(38)
Ahmet Gun Erlat
Min Yan
Anil R. Duggal
Introduction
413(1)
Barrier Requirements
414(5)
Generic Requirements
416(1)
Substrate-Specific Requirements
417(2)
Thin-Film Barrier Technology
419(18)
Historical Background
419(1)
Permeation Measurement Techniques
420(6)
Permeation Through Thin-Film Barriers
426(11)
Barrier-Device Integration
437(5)
Substrate and Barrier Compatibility with OLEDs
437(3)
Thin-Film Encapsulation
440(2)
Concluding Remarks
442(9)
References
442(9)
Index 451
William Wong received his B.S. from the University of California, Los Angeles, in 1990, his M.S. from the University of California, San Diego, in 1995 and his Ph.D. from the University of California, Berkeley, in 1999.  He was an associated research engineer for Siemens Solar Industries in Camarillo, CA, form 1990-1992. Since 2000, he has been a senior member of the research staff at the Palo Alto Research Center.



Alberto Salleo received his physics degree in 1994 from Ecole Polytechnique in France; his M.S. from the University of California, Berkeley in 1998; and his Ph.D. from the University of California, Berkeley, in 2001.  He has held several positions such as visiting scholar and graduate student researcher and currently is a researcher in the Electronic  Materials Laboratory at the Palo Alto Research Center. In January, 2006, he will become an Assistant Professor for the Department of Materials Science and Engineering at Stanford University.