Atnaujinkite slapukų nuostatas

El. knyga: Fluid and Thermodynamics: Volume 1: Basic Fluid Mechanics

Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This first volume discusses fluid mechanical concepts and their applications to ideal and viscous processes. It describes the fundamental hydrostatics and hydrodynamics, and includes an almanac of flow problems for ideal fluids. The book presents numerous exact solutions of flows in simple configurations, each of which is constructed and graphically supported. It addresses ideal, potential, Newtonian and non-Newtonian fluids. Simple, yet precise solutions to special flows are also constructed, namely Blasius boundary layer flows, matched asymptotics of the Navier-Stokes equations, global laws of steady and unsteady boundary layer flows and laminar and turbulent pipe flows. Moreover, the well-established logarithmic velocity profile is criticised.

Introduction.- Hydrostatics.- Hydrodynamics of Ideal Liquids.- Conservation of Angular Momentum - Vorticity.- An Almanac of Simple Flow Problems of Ideal Fluids.- Function-Theoretical Methods Applied to Plane Potential Flows.- Viscous Fluids.- Simple Two- and Three-Dimensional Flow Problems of the Navier-Stokes Equations.- Simple Solutions of Boundary Layer Equations.- Pipe Flows.

Recenzijos

The authors show the richness of fluid mechanics by articulating topics with mathematical exactitude and approachable style. is highly recommended for the bookshelf of every fluid mechanician, physicist, and applied mathematician. The book could also be appropriate as a possible technical elective for upper-class students in engineering, physics, and applied mathematics, or first-year graduate students. Summing Up: Highly recommended. Upper-division undergraduates and above; faculty and professionals. (R. N. Laoulache, Choice, Vol. 54 (10), June, 2017)

This book is exemplary presented and fills an important gap in the literature, as it has been written specifically for students to acquire the basic knowledge of fluid mechanics and thermodynamics, with particular attention to the topic of boundary layer theory,which is very topcial at present. the book delivers an excellent account of what I believe is an appropriate collection of subjects in very topical areas. (Ioan Pop, zbMATH 1352.76002, 2017)

1 Introduction
1(14)
1.1 Historical Notes and Definition of the Subject Field
2(2)
1.2 Properties of Liquids
4(11)
References
12(3)
2 Hydrostatics
15(42)
2.1 Some Basic Concepts
17(2)
2.2 Fluid Pressure
19(3)
2.3 Fundamental Equation of Hydrostatics
22(4)
2.4 Pressure Distribution in a Density Preserving Heavy Fluid
26(10)
2.5 Hydrostatic Buoyancy of Floating Bodies
36(11)
2.6 Hydrostatics in an Accelerated Reference System
47(5)
2.7 Pressure Distribution in the Still Atmosphere
52(5)
Reference
55(2)
3 Hydrodynamics of Ideal Liquids
57(102)
3.1 Basic Kinematic Concepts
60(13)
3.1.1 Motion, Velocity
60(4)
3.1.2 Streamlines, Trajectories, Streaklines
64(9)
3.2 Mass Balance, Continuity
73(10)
3.3 Balance of Linear Momentum
83(9)
3.4 Bernoulli's Equation
92(8)
3.5 Simple Applications of the Bernoulli Equation
100(17)
3.6 Global Formulation of the Momentum Equation
117(2)
3.7 Applications of the Balance Law of Momentum in Integrated Form
119(16)
3.7.1 Reaction Forces Due to Fluid Flow Through Pipes
119(1)
3.7.2 Borda Exit Orifice
120(5)
3.7.3 Impact of a Free Jet on a Wall
125(1)
3.7.4 Mixing Processes
126(5)
3.7.5 Hydraulic Jump
131(4)
3.8 Plane Flow Around Infinitely Long Wings
135(11)
3.8.1 Flow Through a Periodic Grid of Wings
135(5)
3.8.2 Flow Around a Single Wing
140(6)
3.9 Balance of Moment of Momentum
146(7)
3.10 Applications of the Balance of Angular Momentum
153(6)
3.10.1 Segner's Water Wheel
153(3)
3.10.2 Euler's Turbine Equation
156(2)
References
158(1)
4 Conservation of Angular Momentum---Vorticity
159(38)
4.1 Circulation
163(6)
4.2 Simple Vorticity Theorems
169(6)
4.3 Helmholtz Vorticity Theorem
175(13)
4.4 Potential Vorticity Theorem
188(9)
References
194(3)
5 An Almanac of Simple Flow Problems of Ideal Fluids
197(74)
5.1 General Concepts
201(25)
5.1.1 A Primer on Vector Analysis
201(7)
5.1.2 Determination of a Vector Field from Its Sources and Vortices
208(18)
5.2 Vortex-Free Flow Fields
226(12)
5.2.1 Mathematical Preliminaries
226(3)
5.2.2 Potential Fields
229(9)
5.3 Motion-Induced Force on a Body in Potential Flow The Virtual Mass Concept
238(9)
5.3.1 Force on a Sphere
239(2)
5.3.2 Force on a Body of Arbitrary Geometry
241(6)
5.4 Plane Flow Configuration
247(24)
5.4.1 Stream Function
247(6)
5.4.2 Simple Plane Flows of Ideal Fluids
253(11)
Appendix 5.A Proof of the Gradient Version of Gauss' Law
264(3)
Appendix 5.B Proof of Stokes' Law
267(2)
References
269(2)
6 Function-Theoretical Methods Applied to Plane Potential Flows
271(76)
6.1 General Principles
273(19)
6.1.1 Some Notation and Mathematical Properties of Complex Functions
273(8)
6.1.2 Examples
281(6)
6.1.3 Steady Flow Around an Arbitrary Cylinder at Rest...
287(3)
6.1.4 The Kutta-Joukowski Mapping
290(2)
6.2 Applications
292(11)
6.2.1 Flow Over a Plane Plate
292(3)
6.2.2 Potential Flow Over a Circular Segment
295(3)
6.2.3 Realistic Air-Wings with Finite Thickness
298(5)
6.3 The Circle Theorem of Milne-Thomson
303(4)
6.4 Laminar Free Jets
307(8)
6.4.1 Flow Through a Slit Orifice in a Vertical Wall
307(4)
6.4.2 Potential Flow Through a Periodic Arrangement of Slits
311(4)
6.5 Schwarz-Christoffel Transformation
315(32)
6.5.1 Build-up of the General Schwarz-Christoffel Transformation
317(6)
6.5.2 Examples of Schwarz-Christoffel Transformations
323(11)
Appendix 6.A Some Facts on Complex Functions
334(11)
References
345(2)
7 Viscous Fluids
347(76)
7.1 Fundamental Dynamical Equations of Viscous Fluids
350(21)
7.1.1 Newtonian Fluids
356(10)
7.1.2 Dilatant and Pseudoplastic Density Preserving Fluids'
366(5)
7.2 Plane Wall Bounded Shear Flows
371(7)
7.3 Applications
378(19)
7.3.1 Couette Viscometer
379(4)
7.3.2 Cone Plate Viscometer
383(1)
7.3.3 Hover Craft or Oil Pressure Cushion
384(3)
7.3.4 Flows of Liquid Films
387(3)
7.3.5 Influence of the Weight of a Fluid in Plane Poiseuille Flow
390(1)
7.3.6 Slide Bearing Theory
391(6)
7.4 Three-Dimensional Creeping Flow of a Pseudoplastic Fluid with Free Surface
397(26)
References
420(3)
8 Simple Two- and Three-Dimensional Flow Problems of the Navier-Stokes Equations
423(62)
8.1 Introductory Review
425(1)
8.2 Steady State Layer Flows
426(33)
8.2.1 Hagen-Poiseuille Flow
427(13)
8.2.2 Ekman Theory and Its Extensions
440(19)
8.3 Simple Unsteady Flows
459(8)
8.3.1 Oscillating Wall
460(2)
8.3.2 Adjustment of a Velocity Jump
462(5)
8.4 Stationary Axisymmetric Laminar Jet
467(7)
8.5 Viscous Flow in a Converging Two-Dimensional Channel
474(6)
8.6 Closing Remarks
480(5)
Appendix 8.A Construction of the Solution (8.22) to the Boundary Value Problem (8.8)
481(1)
References
482(3)
9 Simple Solutions of Boundary Layer Equations
485(92)
9.1 Preview
487(1)
9.2 Two-Dimensional Boundary Layer Flow in the Vicinity of a Stagnation Point
488(6)
9.3 Three-Dimensional Boundary Layer Flow in the Vicinity of a Stagnation Point
494(3)
9.4 Boundary Layer Flows Around Wedges
497(19)
9.4.1 Boundary Layer Equations
497(2)
9.4.2 Flow Along Sidewalls of Wedges
499(8)
9.4.3 Rotating Disk of Infinite Extent
507(9)
9.5 The Blasius Boundary Layer
516(7)
9.6 Round Laminar Jet---A Not So Simple Boundary Layer Problem
523(6)
9.7 Boundary Layers of the Navier-Stokes Equations Treated by Matched Asymptotic Expansions
529(9)
9.7.1 A Simple Introductory Example
529(4)
9.7.2 The Blasius Boundary Layer
533(5)
9.8 Global Laws of the Steady Boundary Layer Theory
538(15)
9.8.1 Global Mass and Momentum Balances
538(7)
9.8.2 Holstein-Bohlen Procedure
545(8)
9.9 Non-stationary Boundary Layers
553(24)
9.9.1 Impulsive Start from Rest
554(7)
9.9.2 Boundary Layer Formed at the Boundary of an Oscillating Body
561(5)
9.9.3 Oscillation-Induced Drift Current
566(2)
9.9.4 Non-Stationary Plate Boundary Layer
568(5)
References
573(4)
10 Pipe Flows
577(44)
10.1 Introductory Remarks
579(1)
10.2 Laminar Pipe Flow
580(12)
10.2.1 The Law of Hagen-Poiseuille
580(3)
10.2.2 Laminar Flow in Cylindrical Pipes of Arbitrary Cross-Section
583(3)
10.2.3 Flow Out of a Vessel
586(3)
10.2.4 Influence of the Wall Drag of a Pipe to the Exit Flow from a Vessel
589(3)
10.3 Turbulent Flows in Pipes
592(26)
10.3.1 Coefficient of Resistance
592(10)
10.3.2 Plane Turbulent Flow According to Prandtl and von Karman
602(6)
10.3.3 Calculation of Pressure Loss in Pipe Flows
608(6)
10.3.4 Questioning the Prandtl-von Karman Logarithmic Velocity Profile
614(4)
10.4 Concluding Remarks
618(3)
References
620(1)
List of Biographies 621(2)
Name Index 623(4)
Subject Index 627