Atnaujinkite slapukų nuostatas

Food Process Engineering and Technology 3rd edition [Kietas viršelis]

(Technion, Israel Institute of Technology, Haifa)
  • Formatas: Hardback, 742 pages, aukštis x plotis: 235x191 mm, weight: 1680 g
  • Serija: Food Science and Technology
  • Išleidimo metai: 16-Feb-2018
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0128120185
  • ISBN-13: 9780128120187
Kitos knygos pagal šią temą:
  • Formatas: Hardback, 742 pages, aukštis x plotis: 235x191 mm, weight: 1680 g
  • Serija: Food Science and Technology
  • Išleidimo metai: 16-Feb-2018
  • Leidėjas: Academic Press Inc
  • ISBN-10: 0128120185
  • ISBN-13: 9780128120187
Kitos knygos pagal šią temą:

Food Process Engineering and Technology, Third Edition combines scientific depth with practical usefulness, creating a tool for graduate students and practicing food engineers, technologists and researchers looking for the latest information on transformation and preservation processes and process control and plant hygiene topics. This fully updated edition provides recent research and developments in the area, features sections on elements of food plant design, an introductory section on the elements of classical fluid mechanics, a section on non-thermal processes, and recent technologies, such as freeze concentration, osmotic dehydration, and active packaging that are discussed in detail.

  • Provides a strong emphasis on the relationship between engineering and product quality/safety
  • Considers cost and environmental factors
  • Presents a fully updated, adequate review of recent research and developments in the area
  • Includes a new, full chapter on elements of food plant design
  • Covers recent technologies, such as freeze concentration, osmotic dehydration, and active packaging that are discussed in detail
Introduction xxiii
Chapter 1 Physical properties of food materials
1(30)
1.1 Introduction
1(1)
1.2 Mass, Volume, and Density
2(1)
1.3 Mechanical Properties
3(2)
1.3.1 Definitions
3(1)
1.3.2 Rheological Models
4(1)
1.4 Thermal Properties
5(2)
1.5 Electrical Properties
7(1)
1.6 Structure
7(3)
1.7 Water Activity
10(7)
1.7.1 The Importance of Water in Foods
10(1)
1.7.2 Water Activity, Definition, and Determination
11(2)
1.7.3 Water Activity: Prediction
13(1)
1.7.4 Water Vapor Sorption Isotherms
14(3)
1.7.5 Water Activity: Effect on Food Quality and Stability
17(1)
1.8 Phase Transition Phenomena in Foods
17(5)
1.8.1 The Glassy State in Foods
17(2)
1.8.2 Glass Transition Temperature
19(3)
1.9 Optical Properties
22(1)
1.10 Surface Properties
23(1)
1.11 Acoustic Properties
24(7)
References
24(5)
Further Reading
29(2)
Chapter 2 Fluid flow
31(48)
2.1 Introduction
31(1)
2.2 Elements of Fluid Mechanics
31(14)
2.2.1 Introduction
31(1)
2.2.2 The Navier-Stokes Equation
32(1)
2.2.3 Viscosity
33(1)
2.2.4 Fluid Flow Regimes
34(1)
2.2.5 Typical Applications of Newtonian Laminar Flow
35(6)
2.2.6 Turbulent Flow
41(4)
2.3 Flow Properties of Fluids
45(3)
2.3.1 Types of Fluid Flow Behavior
45(2)
2.3.2 Non-Newtonian Fluid Flow in Pipes
47(1)
2.4 Transportation of Fluids
48(15)
2.4.1 Energy Relations, The Bernoulli Equation
48(3)
2.4.2 Pumps: Types and Operation
51(8)
2.4.3 Pump Selection
59(2)
2.4.4 Ejectors
61(1)
2.4.5 Piping
62(1)
2.5 Flow of Particulate Solids (Powder Flow)
63(16)
2.5.1 Introduction
63(1)
2.5.2 Flow Properties of Particulate Solids
63(6)
2.5.3 Fluidization
69(4)
2.5.4 Pneumatic Transport
73(2)
2.5.5 Flow of Powders in Storage Bins
75(1)
2.5.6 Caking
76(1)
References
77(2)
Chapter 3 Heat and mass transfer, basic principles
79(48)
3.1 Introduction
79(1)
3.2 Basic Relations in Transport Phenomena
79(1)
3.2.1 Basic Laws of Transport
79(1)
3.2.2 Mechanisms of Heat and Mass Transfer
80(1)
3.3 Conductive Heat and Mass Transfer
80(11)
3.3.1 The Fourier and Fick Laws
80(1)
3.3.2 Integration of Fourier's and Fick's Laws for Steady-State Conductive Transport
81(2)
3.3.3 Thermal Conductivity, Thermal Diffusivity, and Molecular Diffusivity
83(3)
3.3.4 Examples of Steady-State Conductive Heat and Mass Transfer Processes
86(5)
3.4 Convective Heat and Mass Transfer
91(8)
3.4.1 Film (or Surface) Heat and Mass Transfer Coefficients
91(3)
3.4.2 Empirical Correlations for Convection Heat and Mass Transfer
94(3)
3.4.3 Steady-State Interphase Mass Transfer
97(2)
3.5 Unsteady-State Heat and Mass Transfer
99(7)
3.5.1 The Second Fourier and Fick Laws
99(2)
3.5.2 Solution of Fourier's Second Law Equation for an Infinite Slab
101(1)
3.5.3 Transient Conduction Transfer in Finite Solids
102(3)
3.5.4 Transient Convective Transfer in a Semiinfinite Body
105(1)
3.5.5 Unsteady-Stale Convective Transfer
105(1)
3.6 Heat Transfer by Radiation
106(4)
3.6.1 Interaction Between Matter and Thermal Radiation
106(1)
3.6.2 Radiation Heat Exchange Between Surfaces
107(3)
3.6.3 Radiation Combined With Convection
110(1)
3.7 Heat Exchangers
110(8)
3.7.1 Overall Coefficient of Heat Transfer
110(2)
3.7.2 Heat Exchange Between Flowing Fluids
112(2)
3.7.3 Fouling
114(1)
3.7.4 Heat Exchangers in the Food Process Industry
115(3)
3.8 Microwave and Radio Frequency (RF) Heating
118(3)
3.8.1 Basic Principles of Microwave and RF Heating
119(2)
3.9 Ohmic Heating
121(6)
3.9.1 Introduction
121(1)
3.9.2 Basic Principles
122(1)
3.9.3 Applications and Equipment
123(1)
References
124(2)
Further Reading
126(1)
Chapter 4 Reaction kinetics
127(14)
4.1 Introduction
127(1)
4.2 Basic Concepts
128(5)
4.2.1 Elementary and Nonelementary Reactions
128(1)
4.2.2 Reaction Order
128(3)
4.2.3 Effect of Temperature on Reaction Kinetics
131(2)
4.3 Kinetics of Biological Processes
133(3)
4.3.1 Enzyme-Catalyzed Reactions
133(2)
4.3.2 Growth of Microorganisms
135(1)
4.4 Residence Time and Residence Time Distribution
136(5)
4.4.1 Reactors in Food Processing
136(1)
4.4.2 Residence Time Distribution
137(3)
References
140(1)
Further Reading
140(1)
Chapter 5 Elements of process control
141(24)
5.1 Introduction
141(1)
5.2 Basic Concepts
141(2)
5.3 Basic Control Structures
143(1)
5.3.1 Feedback Control
143(1)
5.3.2 Feed-Forward Control
144(1)
5.3.3 Comparative Merits of Control Strategies
144(1)
5.4 The Block Diagram
144(1)
5.5 Input, Output, and Process Dynamics
145(3)
5.5.1 First-Order Response
146(2)
5.5.2 Second-Order Systems
148(1)
5.6 Control Modes (Control Algorithms)
148(5)
5.6.1 On-Off (Binary) Control
148(1)
5.6.2 Proportional (P) Control
149(2)
5.6.3 Integral (I) Control
151(1)
5.6.4 Proportional-Integral (PI) Control
151(1)
5.6.5 Proportional-Integral-Differential (PID) Control
151(1)
5.6.6 Optimization of Control
152(1)
5.7 Physical Elements of the Control System
153(12)
5.7.1 The Sensors (Measuring Elements)
153(8)
5.7.2 The Controllers
161(1)
5.7.3 The Actuators
162(1)
References
162(3)
Chapter 6 Size reduction
165(28)
6.1 Introduction
165(1)
6.2 Particle Size and Particle Size Distribution
166(9)
6.2.1 Defining the Size of a Single Particle
166(1)
6.2.2 Particle Size Distribution in a Population of Particles: Defining a "Mean Particle Size"
167(3)
6.2.3 Mathematical Models of PSD
170(2)
6.2.4 A Note on Particle Shape
172(3)
6.3 Size Reduction of Solids, Basic Principles
175(3)
6.3.1 Mechanism of Size Reduction in Solids
175(1)
6.3.2 Particle Size Distribution After Size Reduction
175(1)
6.3.3 Energy Consumption
175(3)
6.4 Size Reduction of Solids---Equipment and Methods
178(15)
6.4.1 Impact Mills
178(1)
6.4.2 Pressure Mills
179(1)
6.4.3 Attrition Mills
180(3)
6.4.4 Cutters and Choppers
183(4)
6.4.5 The Wheat Milling Process
187(2)
References
189(4)
Chapter 7 Mixing
193(26)
7.1 Introduction
193(1)
7.2 Mixing of Fluids (Blending)
193(7)
7.2.1 Types of Blenders
193(2)
7.2.2 Flow Patterns in Fluid Mixing
195(1)
7.2.3 Energy Input in Fluid Mixing
196(4)
7.2.4 Mixing Time
200(1)
7.3 Kneading
200(3)
7.4 In-Flow Mixing
203(1)
7.5 Mixing of Particulate Solids
203(5)
7.5.1 Mixing and Segregation
203(1)
7.5.2 Quality of Mixing, The Concept of "Mixedness"
203(3)
7.5.3 Equipment for Mixing Particulate Solids
206(2)
7.6 Homogenization
208(6)
7.6.1 Basic Principles
208(2)
7.6.2 Homogenizers
210(4)
7.7 Foaming
214(5)
References
214(5)
Chapter 8 Filtration and expression
219(24)
8.1 Introduction
219(1)
8.2 Depth Filtration
220(11)
8.2.1 Mechanisms
222(1)
8.2.2 Rate of Filtration
223(5)
8.2.3 Optimization of the Filtration Cycle
228(1)
8.2.4 Characteristics of Filtration Cakes
229(1)
8.2.5 The Role of Cakes in Filtration
230(1)
8.3 Filtration Equipment
231(4)
8.3.1 Depth Filters
231(1)
8.3.2 Barrier (Surface) Filters
231(4)
8.4 Expression
235(8)
8.4.1 Introduction
235(1)
8.4.2 Mechanisms
236(2)
8.4.3 Applications and Equipment
238(3)
References
241(2)
Chapter 9 Centrifugation
243(18)
9.1 Introduction
243(1)
9.2 Basic Principles
244(8)
9.2.1 The Continuous Settling Tank
244(2)
9.2.2 From Settling Tank to Tubular Centrifuge
246(3)
9.2.3 The Baffled Settling Tank and the Disc-Bowl Centrifuge
249(1)
9.2.4 Liquid-Liquid Separation
250(2)
9.3 Centrifuges
252(5)
9.3.1 Tubular Centrifuges
253(1)
9.3.2 Disc-Bowl Centrifuges
253(3)
9.3.3 Decanter Centrifuges
256(1)
9.3.4 Basket Centrifuges
257(1)
9.4 Cyclones
257(4)
References
259(2)
Chapter 10 Membrane processes
261(28)
10.1 Introduction
261(1)
10.2 Tangential Filtration
261(2)
10.3 Mass Transfer Through MF and UF Membranes
263(6)
10.3.1 Solvent Transport
263(2)
10.3.2 Solute Transport: Sieving Coefficient and Rejection
265(1)
10.3.3 Concentration Polarization and Gel Polarization
266(3)
10.4 Mass Transfer in Reverse Osmosis
269(4)
10.4.1 Basic Concepts
269(1)
10.4.2 Solvent Transport in Reverse Osmosis
270(3)
10.5 Membrane Systems
273(4)
10.5.1 Membrane Materials
273(2)
10.5.2 Membrane Configurations
275(2)
10.6 Membrane Processes in the Food Industry
277(5)
10.6.1 Microfiltration
277(1)
10.6.2 Ultrafiltration
278(1)
10.6.3 Nanofiltration and Reverse Osmosis
279(3)
10.7 Electrodialysis
282(7)
References
284(5)
Chapter 11 Extraction
289(22)
11.1 Introduction
289(1)
11.2 Solid-Liquid Extraction (Leaching)
290(12)
11.2.1 Definitions
291(1)
11.2.2 Material Balance
292(1)
11.2.3 Equilibrium
292(1)
11.2.4 Multistage Extraction
292(4)
11.2.5 Stage Efficiency
296(1)
11.2.6 Solid-Liquid Extraction Systems
297(4)
11.2.7 Effect of Processing Conditions on Extraction Performance
301(1)
11.3 Supercritical Fluid Extraction
302(5)
11.3.1 Basic Principles
302(1)
11.3.2 Supercritical Fluids as Solvents
303(2)
11.3.3 Supercritical Extraction Systems
305(1)
11.3.4 Applications
306(1)
11.4 Liquid-Liquid Extraction
307(4)
11.4.1 Principles
307(1)
11.4.2 Applications
308(1)
References
308(3)
Chapter 12 Adsorption and ion exchange
311(18)
12.1 Introduction
311(1)
12.2 Equilibrium Conditions
312(3)
12.3 Batch Adsorption
315(4)
12.4 Adsorption in Columns
319(1)
12.5 Ion Exchange
320(9)
12.5.1 Basic Principles
320(1)
12.5.2 Properties of Ion Exchangers
321(3)
12.5.3 Water Softening Using Ion Exchange
324(1)
12.5.4 Reduction of Acidity in Fruit Juices Using Ion Exchange
325(1)
References
325(4)
Chapter 13 Distillation
329(24)
13.1 Introduction
329(1)
13.2 Vapor-Liquid Equilibrium (VLA)
329(2)
13.3 Continuous Flash Distillation
331(4)
13.4 Batch (Differential) Distillation
335(2)
13.5 Fractional Distillation
337(9)
13.5.1 Basic Concepts
337(1)
13.5.2 Analysis and Design of the Column
338(5)
13.5.3 Effect of the Reflux Ratio
343(1)
13.5.4 Tray Configuration
344(1)
13.5.5 Column Configuration
344(1)
13.5.6 Heating With Live Steam
345(1)
13.5.7 Energy Considerations
345(1)
13.6 Steam Distillation
346(1)
13.7 Distillation of Wines and Spirits
347(1)
13.8 Pervaporation
348(5)
13.8.1 Basic Principles
348(1)
13.8.2 Pervaporation Membranes
349(1)
13.8.3 Applications
350(1)
References
350(3)
Chapter 14 Crystallization and dissolution
353(20)
14.1 Introduction
353(1)
14.2 Kinetics of Crystallization From Solutions
354(6)
14.2.1 Nucleation
354(3)
14.2.2 Crystal Growth
357(3)
14.3 Polymorphism in Lipid Crystals
360(1)
14.4 Crystallization in the Food Industry
361(7)
14.4.1 Equipment
361(2)
14.4.2 Processes
363(5)
14.5 Dissolution
368(5)
14.5.1 Introduction
368(1)
14.5.2 Mechanism and Kinetics
368(2)
References
370(1)
Further Reading
371(2)
Chapter 15 Extrusion
373(22)
15.1 Introduction
373(2)
15.2 The Single-Screw Extruder
375(6)
15.2.1 Structure
375(1)
15.2.2 Operation
376(2)
15.2.3 Flow Models, Extruder Throughput
378(2)
15.2.4 Residence Time Distribution
380(1)
15.3 Twin-Screw Extruders
381(3)
15.3.1 Structure
381(2)
15.3.2 Operation
383(1)
15.3.3 Advantages and Shortcomings
383(1)
15.4 Effect on Foods
384(2)
15.4.1 Physical Effects
384(1)
15.4.2 Chemical Effect
385(1)
15.5 Food Applications of Extrusion
386(9)
15.5.1 Forming Extrusion of Pasta
386(1)
15.5.2 Expanded Snacks
386(2)
15.5.3 Ready-to-Eat Cereals
388(1)
15.5.4 Pellets
388(1)
15.5.5 Other Extruded Starchy and Cereal Products
389(1)
15.5.6 Texturized Protein Products
389(1)
15.5.7 Confectionery and Chocolate
390(1)
15.5.8 Pet Foods
391(1)
References
391(3)
Further Reading
394(1)
Chapter 16 Spoilage and preservation of foods
395(4)
16.1 Mechanisms of Food Spoilage
395(1)
16.2 Food Preservation Processes
395(2)
16.3 Combined Processes (The "Hurdle Effect")
397(1)
16.4 Packaging
397(2)
References
398(1)
Further Reading
398(1)
Chapter 17 Thermal processing
399(22)
17.1 Introduction
399(1)
17.2 The Kinetics of Thermal Inactivation of Microorganisms and Enzymes
400(5)
17.2.1 The Concept of Decimal Reduction Time
400(3)
17.2.2 Effect of the Temperature on the Rate of Thermal Destruction/Inactivation
403(2)
17.3 Lethality of Thermal Processes
405(2)
17.4 Optimization of Thermal Processes With Respect to Quality
407(2)
17.5 Heat Transfer Considerations in Thermal Processing
409(12)
17.5.1 In-Package Thermal Processing
409(6)
17.5.2 In-Flow Thermal Processing
415(4)
References
419(2)
Chapter 18 Thermal processes, methods, and equipment
421(18)
18.1 Introduction
421(1)
18.2 Thermal Processing in Hermetically Closed Containers
421(12)
18.2.1 Filling Into the Containers
421(3)
18.2.2 Expelling Air From the Headspace
424(1)
18.2.3 Sealing
425(1)
18.2.4 Heat Processing
425(8)
18.3 Thermal Processing in Bulk, Before Packaging
433(6)
18.3.1 Bulk Heating-Hot Filling-Sealing-Cooling in Container
433(1)
18.3.2 Bulk Heating-Holding-Bulk Cooling-Cold Filling-Sealing
433(1)
18.3.3 Aseptic Processing
434(3)
References
437(2)
Chapter 19 Refrigeration---Chilling and freezing
439(24)
19.1 Introduction
439(1)
19.2 Effect of Temperature on Food Spoilage
440(8)
19.2.1 Temperature and Chemical Activity
440(3)
19.2.2 Effect of Low Temperature on Enzymatic Spoilage
443(1)
19.2.3 Effect of Low Temperature on Microorganisms
444(1)
19.2.4 Effect of Low Temperature on Biologically Active (Respiring) Tissue
445(3)
19.2.5 The Effect of Low Temperature on Physical Properties
448(1)
19.3 Freezing
448(10)
19.3.1 Phase Transition, Freezing Point
449(3)
19.3.2 Freezing Kinetics, Freezing Time
452(4)
19.3.3 Effect of Freezing and Frozen Storage on Product Quality
456(2)
19.4 Superchilling
458(5)
References
459(2)
Further Reading
461(2)
Chapter 20 Refrigeration---Equipment and methods
463(18)
20.1 Sources of Refrigeration
463(7)
20.1.1 Mechanical Refrigeration
463(6)
20.1.2 Refrigerants
469(1)
20.1.3 Distribution and Delivery of Refrigeration
470(1)
20.2 Cold Storage and Refrigerated Transport
470(3)
20.3 Chillers and Freezers
473(8)
20.3.1 Blast Cooling
473(3)
20.3.2 Contact Freezers
476(1)
20.3.3 Immersion Cooling
477(1)
20.3.4 Evaporative Cooling
477(1)
20.3.5 Pressure Shift Freezing
478(1)
References
479(1)
Further Reading
479(2)
Chapter 21 Evaporation
481(32)
21.1 Introduction
481(1)
21.2 Material and Energy Balance
482(2)
21.3 Heat Transfer
484(8)
21.3.1 The Overall Coefficient of Heal Transfer U
485(3)
21.3.2 The Temperature Difference TS -- TC (ΔT)
488(4)
21.4 Energy Management
492(7)
21.4.1 Multiple-Effect Evaporation
492(5)
21.4.2 Vapor Recompression
497(2)
21.5 Condensers
499(1)
21.6 Evaporators in the Food Industry
500(8)
21.6.1 Open-Pan Batch Evaporator
500(1)
21.6.2 Vacuum Pan Evaporator
501(1)
21.6.3 Evaporators With Internal Tubular Heat Exchangers
501(2)
21.6.4 Evaporators With External Tubular Heat Exchangers
503(1)
21.6.5 Boiling Film Evaporators
503(5)
21.7 Effect of Evaporation on Food Quality
508(5)
21.7.1 Thermal Effects
508(1)
21.7.2 Loss of Volatile Flavor Components
509(1)
References
510(3)
Chapter 22 Dehydration
513(54)
22.1 Introduction
513(1)
22.2 Thermodynamics of Moist Air (Psychrometry)
514(4)
22.2.1 Basic Principles
514(1)
22.2.2 Humidity
515(1)
22.2.3 Saturation, Relative Humidity
516(1)
22.2.4 Adiabatic Saturation, Wet-Bulb Temperature
516(1)
22.2.5 Dew Point
517(1)
22.3 Convective Drying (Air Drying)
518(13)
22.3.1 The Drying Curve
518(2)
22.3.2 The Constant Rate Phase
520(3)
22.3.3 The Falling Rate Phase
523(3)
22.3.4 Calculation of Drying Time
526(2)
22.3.5 Effect of External Conditions on the Drying Rate
528(1)
22.3.6 Relationship Between Film Coefficients in Convective Drying
529(1)
22.3.7 Effect of Radiation Healing
529(1)
22.3.8 Characteristic Drying Curves
530(1)
22.4 Drying Under Varying External Conditions
531(3)
22.4.1 Batch Drying on Trays
531(2)
22.4.2 Through-Flow Batch Drying in a Fixed Bed
533(1)
22.4.3 Continuous Air Drying on a Belt or in a Tunnel
533(1)
22.5 Conductive (Boiling) Drying
534(4)
22.5.1 Basic Principles
534(1)
22.5.2 Kinetics
535(1)
22.5.3 Systems and Applications
536(2)
22.6 Dryers in the Food Processing Industry
538(17)
22.6.1 Cabinet Dryers
539(1)
22.6.2 Tunnel Dryers
540(2)
22.6.3 Belt Dryers
542(1)
22.6.4 Belt-Trough Dryers
543(1)
22.6.5 Rotary Dryers
543(1)
22.6.6 Bin Dryers
544(1)
22.6.7 Grain Dryers
545(1)
22.6.8 Spray Dryers
545(7)
22.6.9 Fluidized-Bed Dryer
552(1)
22.6.10 Pneumatic Dryer
552(1)
22.6.11 Drum Dryers
552(1)
22.6.12 Screw Conveyor and Mixer Dryers
553(2)
22.6.13 Sun Drying, Solar Drying
555(1)
22.7 Issues in Food Drying Technology
555(4)
22.7.1 Predrying Treatments
555(1)
22.7.2 Effect of Drying Conditions on Quality
556(2)
22.7.3 Postdrying Treatments
558(1)
22.7.4 Rehydration Characteristics
558(1)
22.7.5 Agglomeration
559(1)
22.8 Energy Consumption in Drying
559(2)
22.9 Osmotic Dehydration
561(6)
References
562(4)
Further Reading
566(1)
Chapter 23 Freeze drying (lyophilization) and freeze concentration
567(16)
23.1 Introduction
567(1)
23.2 Sublimation of Water
567(1)
23.3 Heat and Mass Transfer in Freeze Drying
568(6)
23.3.1 Heat and Mass Transfer Mechanisms
568(2)
23.3.2 Drying Kinetics---Simplified Model
570(3)
23.3.3 Drying Kinetics---Other Models
573(1)
23.4 Freeze Drying, in Practice
574(3)
23.4.1 Freezing
574(1)
23.4.2 Drying Conditions
574(1)
23.4.3 Microwave Freeze Drying
575(1)
23.4.4 Freeze Drying, Commercial Facilities
576(1)
23.4.5 Freeze Dryers
576(1)
23.5 Freeze Concentration
577(6)
23.5.1 Basic Principles
577(1)
23.5.2 The Process of Freeze Concentration
578(1)
References
579(4)
Chapter 24 Frying, baking, and roasting
583(8)
24.1 Introduction
583(1)
24.2 Frying
583(3)
24.2.1 Types of Frying
583(1)
24.2.2 Heat and Mass Transfer in Frying
584(1)
24.2.3 Systems and Operation
585(1)
24.2.4 Health Aspects of Fried Foods
586(1)
24.3 Baking and Roasting
586(5)
References
589(2)
Chapter 25 Chemical preservation
591(16)
25.1 Introduction
591(1)
25.2 Chemical Control of Microbial Spoilage
591(9)
25.2.1 Kinetics, Dose-Response Function
591(3)
25.2.2 Individual Antimicrobial Agents
594(6)
25.3 Antioxidants
600(7)
25.3.1 Oxidation and Antioxidants in Food
600(1)
25.3.2 Individual Food Antioxidants
601(1)
References
602(4)
Further Reading
606(1)
Chapter 26 Ionizing irradiation and other nonthermal preservation processes
607(18)
26.1 Preservation by Ionizing Radiations
607(8)
26.1.1 Introduction
607(1)
26.1.2 Ionizing Radiations
607(1)
26.1.3 Radiation Sources
608(1)
26.1.4 Interaction of Ionizing Radiation With Matter
609(1)
26.1.5 Radiation Dose
610(2)
26.1.6 Chemical and Biological Effects of Ionizing Irradiation
612(1)
26.1.7 Industrial Applications
613(2)
26.2 High Hydrostatic Pressure (HHP, or HPP) Preservation
615(3)
26.3 Pulsed Electric Fields (PEF)
618(1)
26.4 Pulsed Intense Light
619(1)
26.5 Ultrasonic Treatment
620(1)
26.6 Application of Cold Plasma
620(5)
References
620(3)
Further Reading
623(2)
Chapter 27 Food packaging
625(18)
27.1 Introduction
625(1)
27.2 Packaging Materials
626(10)
27.2.1 Introduction
626(2)
27.2.2 Materials for Packaging Foods
628(3)
27.2.3 Transport Properties of Packaging Materials
631(3)
27.2.4 Optical Properties
634(1)
27.2.5 Mechanical Properties
634(1)
27.2.6 Chemical Reactivity
635(1)
27.3 The Atmosphere in the Package
636(3)
27.3.1 Vacuum Packaging
637(1)
27.3.2 Controlled Atmosphere Packaging
637(1)
27.3.3 Modified Atmosphere Packaging
637(1)
27.3.4 Active Packaging
638(1)
27.3.5 Intelligent Packaging
638(1)
27.4 Environmental Issues
639(4)
References
639(2)
Further Reading
641(2)
Chapter 28 Cleaning, disinfection, and sanitation
643(14)
28.1 Introduction
643(1)
28.2 Cleaning Kinetics and Mechanisms
644(5)
28.2.1 Effect of the Contaminant
644(2)
28.2.2 Effect of the Support
646(1)
28.2.3 Effect of the Cleaning Agent
647(1)
28.2.4 Effect of the Temperature
648(1)
28.2.5 Effect of Mechanical Action (Shear)
649(1)
28.3 Kinetics of Disinfection
649(2)
28.4 Cleaning of Raw Materials
651(1)
28.5 Cleaning of Plants and Equipment
652(2)
28.5.1 Cleaning out of Place
652(1)
28.5.2 Cleaning in Place
653(1)
28.6 Cleaning of Packages
654(1)
28.7 Odor Abatement
654(3)
References
655(2)
Chapter 29 Elements of food plant design
657(12)
29.1 Introduction
657(1)
29.2 The Preproject
657(2)
29.3 Process Design, Development of the Process Flow Diagrams
659(7)
29.3.1 The Block Diagram
659(3)
29.3.2 The Equipment Flow Diagram
662(1)
29.3.3 Layout
662(4)
29.4 Procurement of Equipment and Accessories
666(1)
29.5 Food Safety Systems (HACCP, GMP), Protection of the Environment and Their Place in Plant Design
667(2)
References
668(1)
Further Reading
668(1)
Appendix 669(20)
Index 689
Dr. Berk is a chemical engineer and food scientist with a long history of work in food engineering, including appointments as a professor at Technion IIT, MIT, and Agro-Paris and as a consultant at UNIDO, FAO, the Industries Development Corporation, and Nestle. He is the recipient of the International Association of Food and Engineering Life Achievement Award (2011), and has written 6 books (3 with Elsevier) and numerous papers and reviews. His main research interests include heat and mass transfer and kinetics of deterioration.