Atnaujinkite slapukų nuostatas

El. knyga: Forcing For Mathematicians

(Washington Univ In St Louis, Usa)
  • Formatas: 152 pages
  • Išleidimo metai: 24-Jan-2014
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814566025
Kitos knygos pagal šią temą:
  • Formatas: 152 pages
  • Išleidimo metai: 24-Jan-2014
  • Leidėjas: World Scientific Publishing Co Pte Ltd
  • Kalba: eng
  • ISBN-13: 9789814566025
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

Weaver explains the basic machinery of forcing to fellow mathematics assuming no background in logic beyond the facility with formal syntax that should be second nature to any well trained mathematician. He emphasizes applications outside of set theory that were previously only available in the primary literature. His topics include Zermelo-Fraenkel set theory, ordinals and cardinals, reflection generic extensions, the fundamental theorem, families of entire functions, the diamond principle, Suslin's problem, a stronger diamond, Whitehead's problem, iterated forcing, the open coloring axiom, automorphisms of the Calkin algebra, and the multiverse interpretation. Annotation ©2014 Ringgold, Inc., Portland, OR (protoview.com)

Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have renewed interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
Preface vii
1 Peano Arithmetic
1(4)
2 Zermelo-Fraenkel Set Theory
5(4)
3 Well-Ordered Sets
9(4)
4 Ordinals
13(4)
5 Cardinals
17(4)
6 Relativization
21(4)
7 Reflection
25(4)
8 Forcing Notions
29(4)
9 Generic Extensions
33(4)
10 Forcing Equality
37(4)
11 The Fundamental Theorem
41(4)
12 Forcing CH
45(4)
13 Forcing -- CH
49(4)
14 Families of Entire Functions
53(4)
15 Self-Homeomorphisms of βN \ N, I*
57(4)
16 Pure States on B(H)*
61(4)
17 The Diamond Principle
65(4)
18 Suslin's Problem, I*
69(4)
19 Naimark's Problem*
73(4)
20 A Stronger Diamond
77(4)
21 Whitehead's Problem, I*
81(4)
22 Iterated Forcing
85(4)
23 Martin's Axiom
89(4)
24 Suslin's Problem, II*
93(4)
25 Whitehead's Problem, II*
97(4)
26 The Open Coloring Axiom
101(4)
27 Self-Homeomorphisms of βN \ N, II*
105(4)
28 Automorphisms of the Calkin Algebra, I*
109(4)
29 Automorphisms of the Calkin Algebra, II*
113(4)
30 The Multiverse Interpretation
117(4)
Appendix A Forcing with Preorders 121(2)
Exercises 123(6)
Notes 129(4)
Bibliography 133(4)
Notation Index 137(2)
Subject Index 139