neleidžiama
neleidžiama
Skaitmeninių teisių valdymas (DRM)
Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).
Reikalinga programinė įranga
Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)
Norint skaityti šią el. knygą asmeniniame arba Mac kompiuteryje, Jums reikalinga Adobe Digital Editions (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas Adobe Reader, kurią tikriausiai jau turite savo kompiuteryje.)
Negalite skaityti šios el. knygos naudodami Amazon Kindle.
.- FastSAM-3DSlicer: A 3D-Slicer Extension for 3D Volumetric Segment Anything Model with Uncertainty Quantification.
.- The Importance of Downstream Networks in Digital Pathology Foundation Models.
.- Temporal-spatial Adaptation of Promptable SAM Enhance Accuracy and Generalizability of cine CMR Segmentation.
.- Navigating Data Scarcity using Foundation Models: A Benchmark of Few-Shot and Zero-Shot Learning Approaches in Medical Imaging.
.- AutoEncoder-Based Feature Transformation with Multiple Foundation Models in Computational Pathology.
.- OSATTA: One-Shot Automatic Test Time Augmentation for Domain Adaptation.
.- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision.
.- SAT-Morph: Unsupervised Deformable Medical Image Registration using Vision Foundation Models with Anatomically Aware Text Prompt.
.- Promptable Counterfactual Diffusion Model for Unified Brain Tumor Segmentation and Generation with MRIs.
.- D- Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions.
.- Optimal Prompting in SAM for Few-Shot and Weakly Supervised Medical Image Segmentation.
.- UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation.
.- TUMSyn: A Text-Guided Generalist model for Customized Multimodal MR Image Synthesis.
.- SAMU: An Efficient and Promptable Foundation Model for Medical Image Segmentation.
.- Anatomical Embedding-Based Training Method for Medical Image Segmentation Foundation Models.
.- Boosting Vision-Language Models for Histopathology Classification: Predict all at once.
.- MAGDA: Multi-agent guideline-driven diagnostic assistance.