|
|
1 | (3) |
|
|
4 | (25) |
|
|
4 | (1) |
|
2.2 The Law of Large Numbers |
|
|
4 | (4) |
|
2.3 The Geometry of High Dimensions |
|
|
8 | (1) |
|
2.4 Properties of the Unit Ball |
|
|
8 | (5) |
|
2.5 Generating Points Uniformly at Random from a Ball |
|
|
13 | (2) |
|
2.6 Gaussians in High Dimension |
|
|
15 | (1) |
|
2.7 Random Projection and Johnson-Lindenstrauss Lemma |
|
|
16 | (2) |
|
|
18 | (2) |
|
2.9 Fitting a Spherical Gaussian to Data |
|
|
20 | (1) |
|
|
21 | (1) |
|
|
22 | (7) |
|
3 Best-Fit Subspaces and Singular Value Decomposition (SVD) |
|
|
29 | (33) |
|
|
29 | (2) |
|
|
31 | (1) |
|
|
31 | (3) |
|
3.4 Singular Value Decomposition (SVD) |
|
|
34 | (2) |
|
3.5 Best Rank-A: Approximations |
|
|
36 | (1) |
|
3.6 Left Singular Vectors |
|
|
37 | (2) |
|
3.7 Power Method for Singular Value Decomposition |
|
|
39 | (3) |
|
3.8 Singular Vectors and Eigenvectors |
|
|
42 | (1) |
|
3.9 Applications of Singular Value Decomposition |
|
|
42 | (11) |
|
|
53 | (1) |
|
|
54 | (8) |
|
4 Random Walks and Markov Chains |
|
|
62 | (47) |
|
4.1 Stationary Distribution |
|
|
65 | (2) |
|
4.2 Markov Chain Monte Carlo |
|
|
67 | (4) |
|
|
71 | (2) |
|
4.4 Convergence of Random Walks on Undirected Graphs |
|
|
73 | (8) |
|
4.5 Electrical Networks and Random Walks |
|
|
81 | (4) |
|
4.6 Random Walks on Undirected Graphs with Unit Edge Weights |
|
|
85 | (7) |
|
4.7 Random Walks in Euclidean Space |
|
|
92 | (3) |
|
4.8 The Web as a Markov Chain |
|
|
95 | (3) |
|
|
98 | (1) |
|
|
99 | (10) |
|
|
109 | (50) |
|
|
109 | (1) |
|
5.2 The Perceptron Algorithm |
|
|
110 | (1) |
|
5.3 Kernel Functions and Nonlinearly Separable Data |
|
|
111 | (2) |
|
5.4 Generalizing to New Data |
|
|
113 | (5) |
|
|
118 | (8) |
|
5.6 VC-Dimension and Machine Learning |
|
|
126 | (1) |
|
5.7 Other Measures of Complexity |
|
|
127 | (1) |
|
|
128 | (6) |
|
|
134 | (4) |
|
|
138 | (7) |
|
|
145 | (3) |
|
5.12 Further Current Directions |
|
|
148 | (4) |
|
|
152 | (1) |
|
|
152 | (7) |
|
6 Algorithms for Massive Data Problems: Streaming, Sketching, and Sampling |
|
|
159 | (23) |
|
|
159 | (1) |
|
6.2 Frequency Moments of Data Streams |
|
|
160 | (9) |
|
6.3 Matrix Algorithms Using Sampling |
|
|
169 | (8) |
|
6.4 Sketches of Documents |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
179 | (3) |
|
|
182 | (33) |
|
|
182 | (3) |
|
|
185 | (4) |
|
|
189 | (1) |
|
7.4 Finding Low-Error Clusterings |
|
|
189 | (1) |
|
|
190 | (7) |
|
7.6 Approximation Stability |
|
|
197 | (2) |
|
7.7 High-Density Clusters |
|
|
199 | (2) |
|
|
201 | (1) |
|
7.9 Recursive Clustering Based on Sparse Cuts |
|
|
202 | (1) |
|
7.10 Dense Submatrices and Communities |
|
|
202 | (3) |
|
7.11 Community Finding and Graph Partitioning |
|
|
205 | (3) |
|
7.12 Spectral Clustering Applied to Social Networks |
|
|
208 | (2) |
|
|
210 | (1) |
|
|
210 | (5) |
|
|
215 | (59) |
|
|
215 | (7) |
|
|
222 | (10) |
|
|
232 | (3) |
|
8.4 Cycles and Full Connectivity |
|
|
235 | (4) |
|
8.5 Phase Transitions for Increasing Properties |
|
|
239 | (2) |
|
|
241 | (5) |
|
|
246 | (6) |
|
8.8 Nonuniform Models of Random Graphs |
|
|
252 | (2) |
|
|
254 | (7) |
|
|
261 | (5) |
|
|
266 | (1) |
|
|
266 | (8) |
|
9 Topic Models, Nonnegative Matrix Factorization, Hidden Markov Models, and Graphical Models |
|
|
274 | (44) |
|
|
274 | (3) |
|
|
277 | (2) |
|
9.3 Nonnegative Matrix Factorization |
|
|
279 | (2) |
|
9.4 NMF with Anchor Terms |
|
|
281 | (1) |
|
9.5 Hard and Soft Clustering |
|
|
282 | (1) |
|
9.6 The Latent Dirichlet Allocation Model for Topic Modeling |
|
|
283 | (2) |
|
9.7 The Dominant Admixture Model |
|
|
285 | (2) |
|
|
287 | (3) |
|
9.9 Finding the Term-Topic Matrix |
|
|
290 | (5) |
|
9.10 Hidden Markov Models |
|
|
295 | (3) |
|
9.11 Graphical Models and Belief Propagation |
|
|
298 | (1) |
|
9.12 Bayesian or Belief Networks |
|
|
299 | (1) |
|
9.13 Markov Random Fields |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
301 | (2) |
|
9.16 Message Passing in General Graphs |
|
|
303 | (7) |
|
|
310 | (1) |
|
9.18 Correlation between Variables |
|
|
311 | (4) |
|
|
315 | (1) |
|
|
315 | (3) |
|
|
318 | (23) |
|
10.1 Ranking and Social Choice |
|
|
318 | (4) |
|
10.2 Compressed Sensing and Sparse Vectors |
|
|
322 | (3) |
|
|
325 | (2) |
|
10.4 An Uncertainty Principle |
|
|
327 | (3) |
|
|
330 | (2) |
|
|
332 | (2) |
|
10.7 Integer Optimization |
|
|
334 | (1) |
|
10.8 Semi-Definite Programming |
|
|
334 | (2) |
|
|
336 | (1) |
|
|
337 | (4) |
|
|
341 | (19) |
|
|
341 | (1) |
|
|
342 | (3) |
|
|
345 | (1) |
|
11.4 Solving the Dilation Equation |
|
|
346 | (1) |
|
11.5 Conditions on the Dilation Equation |
|
|
347 | (3) |
|
11.6 Derivation of the Wavelets from the Scaling Function |
|
|
350 | (3) |
|
11.7 Sufficient Conditions for the Wavelets to Be Orthogonal |
|
|
353 | (2) |
|
11.8 Expressing a Function in Terms of Wavelets |
|
|
355 | (1) |
|
11.9 Designing a Wavelet System |
|
|
356 | (1) |
|
|
357 | (1) |
|
11.11 Bibliographic Notes |
|
|
357 | (1) |
|
|
357 | (3) |
|
|
360 | (51) |
|
12.1 Definitions and Notation |
|
|
360 | (1) |
|
|
361 | (4) |
|
|
365 | (7) |
|
|
372 | (8) |
|
12.5 Bounds on Tail Probability |
|
|
380 | (6) |
|
12.6 Applications of the Tail Bound |
|
|
386 | (1) |
|
12.7 Eigenvalues and Eigenvectors |
|
|
387 | (13) |
|
12.8 Generating Functions |
|
|
400 | (4) |
|
|
404 | (3) |
|
|
407 | (4) |
References |
|
411 | (10) |
Index |
|
421 | |