Chapter 1 Fourier Series |
|
1 | (38) |
|
1.1 Theoretical background |
|
|
1 | (8) |
|
1.1.1 Orthogonal functions |
|
|
1 | (2) |
|
|
3 | (2) |
|
|
5 | (1) |
|
1.1.4 Properties of Fourier series |
|
|
6 | (2) |
|
1.1.5 Discrete spectra. Power distribution |
|
|
8 | (1) |
|
|
9 | (8) |
|
1.2.1 Exercise 1.1 Examples of decomposition calculations |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
|
12 | (1) |
|
1.2.6 Exercise 1.6 Decomposing rectangular functions |
|
|
13 | (1) |
|
1.2.7 Exercise 1.7 Translation and composition of functions |
|
|
14 | (1) |
|
1.2.8 Exercise 1.8 Time derivation of a function |
|
|
15 | (1) |
|
1.2.9 Exercise 1.9 Time integration of functions |
|
|
15 | (1) |
|
|
15 | (1) |
|
1.2.11 Exercise 1.11 Applications in electronic circuits |
|
|
16 | (1) |
|
1.3 Solutions to the exercises |
|
|
17 | (22) |
|
1.3.1 Exercise 1.1 Examples of decomposition calculations |
|
|
17 | (8) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
27 | (2) |
|
1.3.7 Exercise 1.7 Translation and composition of functions |
|
|
29 | (2) |
|
1.3.8 Exercise 1.8 Time derivation of functions |
|
|
31 | (1) |
|
1.3.9 Exercise 1.9 Time integration of functions |
|
|
32 | (1) |
|
|
32 | (3) |
|
|
35 | (4) |
Chapter 2 Fourier Transform |
|
39 | (58) |
|
2.1 Theoretical background |
|
|
39 | (17) |
|
|
39 | (3) |
|
2.1.2 Properties of the Fourier transform |
|
|
42 | (4) |
|
|
46 | (5) |
|
2.1.4 Fourier transform of common functions |
|
|
51 | (2) |
|
2.1.5 Calculating Fourier transforms using the Dirac impulse method |
|
|
53 | (1) |
|
2.1.6 Fourier transform of periodic functions |
|
|
54 | (1) |
|
|
54 | (1) |
|
2.1.8 Upper limits to the Fourier transform |
|
|
55 | (1) |
|
|
56 | (11) |
|
|
56 | (1) |
|
|
57 | (1) |
|
|
58 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
59 | (1) |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (1) |
|
|
62 | (1) |
|
|
62 | (1) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
2.3 Solutions to the exercises |
|
|
67 | (30) |
|
|
67 | (1) |
|
|
68 | (6) |
|
|
74 | (1) |
|
|
74 | (2) |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (2) |
|
|
79 | (3) |
|
|
82 | (3) |
|
|
85 | (1) |
|
|
86 | (2) |
|
|
88 | (3) |
|
|
91 | (1) |
|
|
91 | (1) |
|
|
92 | (2) |
|
|
94 | (1) |
|
|
95 | (2) |
Chapter 3 Laplace Transform |
|
97 | (46) |
|
3.1 Theoretical background |
|
|
97 | (14) |
|
|
97 | (1) |
|
3.1.2 Existence of the Laplace transform |
|
|
98 | (1) |
|
3.1.3 Properties of the Laplace transform |
|
|
98 | (4) |
|
3.1.4 Final value and initial value theorems |
|
|
102 | (1) |
|
3.1.5 Determining reverse transforms |
|
|
102 | (3) |
|
3.1.6 Approximation methods |
|
|
105 | (2) |
|
3.1.7 Laplace transform and differential equations |
|
|
107 | (1) |
|
3.1.8 Table of common Laplace transforms |
|
|
108 | (2) |
|
3.1.9 Transient state and steady state |
|
|
110 | (1) |
|
|
111 | (5) |
|
|
111 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
115 | (1) |
|
|
115 | (1) |
|
3.3 Solutions to the exercises |
|
|
116 | (27) |
|
|
116 | (1) |
|
|
117 | (4) |
|
|
121 | (1) |
|
|
122 | (8) |
|
|
130 | (1) |
|
|
131 | (1) |
|
|
132 | (4) |
|
|
136 | (2) |
|
|
138 | (1) |
|
|
139 | (4) |
Chapter 4 Integrals and Convolution Product |
|
143 | (26) |
|
4.1 Theoretical background |
|
|
143 | (6) |
|
4.1.1 Analyzing linear systems using convolution integrals |
|
|
143 | (1) |
|
4.1.2 Convolution properties |
|
|
144 | (1) |
|
4.1.3 Graphical interpretation of the convolution product |
|
|
145 | (1) |
|
4.1.4 Convolution of a function using a unit impulse |
|
|
145 | (2) |
|
4.1.5 Step response from a system |
|
|
147 | (1) |
|
4.1.6 Eigenfunction of a convolution operator |
|
|
148 | (1) |
|
|
149 | (4) |
|
|
149 | (1) |
|
|
150 | (1) |
|
|
150 | (1) |
|
|
151 | (1) |
|
|
151 | (1) |
|
|
152 | (1) |
|
4.3 Solutions to the exercises |
|
|
153 | (16) |
|
|
153 | (3) |
|
|
156 | (4) |
|
|
160 | (3) |
|
|
163 | (1) |
|
|
164 | (1) |
|
|
165 | (4) |
Chapter 5 Correlation |
|
169 | (44) |
|
5.1 Theoretical background |
|
|
169 | (8) |
|
|
169 | (1) |
|
5.1.2 Correlation function |
|
|
170 | (2) |
|
5.1.3 Properties of correlation functions |
|
|
172 | (4) |
|
|
176 | (1) |
|
|
177 | (6) |
|
|
177 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
178 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (1) |
|
|
181 | (1) |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
183 | (1) |
|
5.3 Solutions to the exercises |
|
|
183 | (30) |
|
|
183 | (5) |
|
|
188 | (3) |
|
|
191 | (1) |
|
|
192 | (1) |
|
|
193 | (3) |
|
|
196 | (1) |
|
|
197 | (4) |
|
|
201 | (3) |
|
|
204 | (1) |
|
|
205 | (1) |
|
|
206 | (1) |
|
|
207 | (1) |
|
|
208 | (1) |
|
|
209 | (4) |
Chapter 6 Signal Sampling |
|
213 | (32) |
|
6.1 Theoretical background |
|
|
213 | (12) |
|
|
213 | (1) |
|
|
214 | (4) |
|
6.1.3 Finite width sampling |
|
|
218 | (3) |
|
6.1.4 Sample and hold (S/H) sampling |
|
|
221 | (4) |
|
|
225 | (4) |
|
|
225 | (1) |
|
|
225 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
226 | (1) |
|
|
227 | (1) |
|
|
227 | (1) |
|
|
228 | (1) |
|
6.3 Solutions to the exercises |
|
|
229 | (16) |
|
|
229 | (1) |
|
|
229 | (4) |
|
|
233 | (2) |
|
|
235 | (1) |
|
|
236 | (2) |
|
|
238 | (2) |
|
|
240 | (2) |
|
|
242 | (3) |
Bibliography |
|
245 | (2) |
Index |
|
247 | |