Atnaujinkite slapukų nuostatas

El. knyga: Fourier Analysis on Polytopes and the Geometry of Numbers

  • Formatas: 325 pages
  • Serija: Student Mathematical Library 107
  • Išleidimo metai: 04-Apr-2024
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470476632
  • Formatas: 325 pages
  • Serija: Student Mathematical Library 107
  • Išleidimo metai: 04-Apr-2024
  • Leidėjas: American Mathematical Society
  • ISBN-13: 9781470476632

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book offers a gentle introduction to the geometry of numbers from a modern Fourier-analytic point of view. One of the main themes is the transfer of geometric knowledge of a polytope to analytic knowledge of its Fourier transform. The Fourier transform preserves all of the information of a polytope, and turns its geometry into analysis. The approach is unique, and streamlines this emerging field by presenting new simple proofs of some basic results of the field. In addition, each chapter is fitted with many exercises, some of which have solutions and hints in an appendix. Thus, an individual learner will have an easier time absorbing the material on their own, or as part of a class.

Overall, this book provides an introduction appropriate for an advanced undergraduate, a beginning graduate student, or researcher interesting in exploring this important expanding field.
Motivational problem: Tiling a rectangle with rectangles
Examples nourish the theory
The basics of Fourier analysis
Geometry of numbers, Part I: Minkowski meets Siegel
An introduction to Euclidean lattices
Geometry of numbers, Part II: Blichfedt's theorem
The Fourier transform of a polytope via its vertex description: Brion's
theorem
What is an angle in higher dimensions?
Appendix A. Solutions and hints to selected problems
Appendix B. The dominated convergence theorem and other goodies
Bibliography
Index
Sinai Robins, University of Sao Paulo, Brazil.