Atnaujinkite slapukų nuostatas

El. knyga: Fourier Transformation for Pedestrians

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. 

Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.
1 Fourier Series
1(32)
1.1 Fourier Series
2(11)
1.1.1 Even and Odd Functions
2(1)
1.1.2 Definition of the Fourier Series
3(2)
1.1.3 Calculation of the Fourier Coefficients
5(4)
1.1.4 Fourier Series in Complex Notation
9(4)
1.2 Theorems and Rules
13(8)
1.2.1 Linearity Theorem
13(1)
1.2.2 The First Shifting Rule (Shifting Within the Time Domain)
13(3)
1.2.3 The Second Shifting Rule (Shifting Within the Frequency Domain)
16(5)
1.2.4 Scaling Theorem
21(1)
1.3 Partial Sums, Bessel's Inequality, Parseval's Equation
21(3)
1.4 Gibbs' Phenomenon
24(9)
1.4.1 Dirichlet's Integral Kernel
25(1)
1.4.2 Integral Notation of Partial Sums
26(1)
1.4.3 Gibbs' Overshoot
27(6)
2 Continuous Fourier Transformation
33(38)
2.1 Continuous Fourier Transformation
33(9)
2.1.1 Even and Odd Functions
34(1)
2.1.2 The δ-Function
34(1)
2.1.3 Forward and Inverse Transformation
35(6)
2.1.4 Polar Representation of the Fourier Transform
41(1)
2.2 Theorems and Rules
42(5)
2.2.1 Linearity Theorem
42(1)
2.2.2 The First Shifting Rule
42(2)
2.2.3 The Second Shifting Rule
44(2)
2.2.4 Scaling Theorem
46(1)
2.3 Convolution, Cross Correlation, Autocorrelation, Parseval's Theorem
47(13)
2.3.1 Convolution
47(9)
2.3.2 Cross Correlation
56(1)
2.3.3 Autocorrelation
57(1)
2.3.4 Parseval's Theorem
58(2)
2.4 Fourier Transformation of Derivatives
60(2)
2.5 Pitfalls
62(9)
2.5.1 "Turn 1 into 3"
62(2)
2.5.2 Truncation Error
64(7)
3 Window Functions
71(22)
3.1 The Rectangular Window
72(4)
3.1.1 Zeros
72(1)
3.1.2 Intensity at the Central Peak
72(2)
3.1.3 Sidelobe Suppression
74(1)
3.1.4 3 dB-Bandwidth
74(1)
3.1.5 Asymptotic Behaviour of Sidelobes
75(1)
3.2 The Triangular Window (Fejer Window)
76(1)
3.3 The Cosine Window
77(1)
3.4 The cos2-Window (Hanning)
78(2)
3.5 The Hamming Window
80(1)
3.6 The Triplet Window
81(1)
3.7 The Gauss Window
82(1)
3.8 The Kaiser---Bessel Window
83(2)
3.9 The Blackman---Harris Window
85(1)
3.10 Overview over Window Functions
86(4)
3.11 Windowing or Convolution?
90(3)
4 Discrete Fourier Transformation
93(44)
4.1 Discrete Fourier Transformation
93(7)
4.1.1 Even and Odd Series and Wrap-Around
94(1)
4.1.2 The Kronecker Symbol or the "Discrete δ-Function"
94(2)
4.1.3 Definition of the Discrete Fourier Transformation
96(4)
4.2 Theorems and Rules
100(4)
4.2.1 Linearity Theorem
100(1)
4.2.2 The First Shifting Rule (Shifting in the Time Domain)
101(1)
4.2.3 The Second Shifting Rule (Shifting in the Frequency Domain)
102(1)
4.2.4 Scaling Rule/Nyquist Frequency
102(2)
4.3 Convolution, Cross Correlation, Autocorrelation, Parseval's Theorem
104(6)
4.3.1 Convolution
105(3)
4.3.2 Cross Correlation
108(1)
4.3.3 Autocorrelation
109(1)
4.3.4 Parseval's Theorem
109(1)
4.4 The Sampling Theorem
110(5)
4.5 Data Mirroring
115(4)
4.6 How to Get Rid of the "Straight-Jacket" Periodic Continuation? By Using Zero-Padding!
119(6)
4.7 Fast Fourier Transformation (FFT)
125(12)
5 Filter Effect in Digital Data Processing
137(18)
5.1 Transfer Function
137(2)
5.2 Low-Pass, High-Pass, Band-Pass, Notch Filter
139(7)
5.3 Shifting Data
146(1)
5.4 Data Compression
147(1)
5.5 Differentiation of Discrete Data
148(1)
5.6 Integration of Discrete Data
149(6)
6 Data Streams and Fractional Delays
155(18)
6.1 Fractional Delays
155(1)
6.2 Non-recursive Algorithms
156(8)
6.3 Stability of Recursive Algorithms
164(1)
6.4 Thiran's All-Pass Filter for N = 1
165(8)
6.4.1 Impulse Response
167(1)
6.4.2 Step Response
168(1)
6.4.3 Ramp Response
169(4)
7 Tomography: Backprojection of Filtered Projections
173(10)
7.1 Projection
173(2)
7.2 Backprojection of Filtered Projections
175(8)
Appendix: Solutions 183(54)
References 237(2)
Index 239
Prof. Dr. rer. nat. habil. Tilman Butz studied Physics at the Technical University of Munich, Germany, where he received the doctors degree and habilitated in Experimental Physics. He was a Heisenberg Fellow. He was appointed to the Professorship in Experimental Physics at the University of Leipzig, Germany, in 1993 and headed the accelerator laboratory LIPSION until his retirement in 2011. His expertise is in Nuclear Solid State Physics with focus on Nuclear Spectroscopy and Nuclear Microprobes addressing a broad range of fields in materials and life sciences. He was engaged in Academic Self-Administration as Vice-Dean, Dean, and Vice-Rector for Research.