Atnaujinkite slapukų nuostatas

El. knyga: From Categories to Homotopy Theory

(Universität Hamburg)
Kitos knygos pagal šią temą:
Kitos knygos pagal šią temą:

DRM apribojimai

  • Kopijuoti:

    neleidžiama

  • Spausdinti:

    neleidžiama

  • El. knygos naudojimas:

    Skaitmeninių teisių valdymas (DRM)
    Leidykla pateikė šią knygą šifruota forma, o tai reiškia, kad norint ją atrakinti ir perskaityti reikia įdiegti nemokamą programinę įrangą. Norint skaityti šią el. knygą, turite susikurti Adobe ID . Daugiau informacijos  čia. El. knygą galima atsisiųsti į 6 įrenginius (vienas vartotojas su tuo pačiu Adobe ID).

    Reikalinga programinė įranga
    Norint skaityti šią el. knygą mobiliajame įrenginyje (telefone ar planšetiniame kompiuteryje), turite įdiegti šią nemokamą programėlę: PocketBook Reader (iOS / Android)

    Norint skaityti šią el. knygą asmeniniame arba „Mac“ kompiuteryje, Jums reikalinga  Adobe Digital Editions “ (tai nemokama programa, specialiai sukurta el. knygoms. Tai nėra tas pats, kas „Adobe Reader“, kurią tikriausiai jau turite savo kompiuteryje.)

    Negalite skaityti šios el. knygos naudodami „Amazon Kindle“.

"Category theory has at least two important features. The first one is that it allows us to structure our mathematical world. Many constructions that you encounter in your daily life look structurally very similar, like products of sets, products of topological spaces, products of modules and then you might be delighted to learn that there is a notion of a product of objects in a category and all the above examples are actually just instances of such products, here in the category of sets, topological spaces and modules, so you don't have to reprove all the properties products have, because they hold for every such construction. So category theory helps you to recognize things as what they are. It also allows you to express objects in a category by something that looks apparently way larger. For instance the Yoneda Lemma describes a set of the form F(C) (where C is an object of some category and F is a functor from that category to the category of sets) as the set of natural transformations between another nice functor and F. This might look like a bad deal, but in this set of natural transformations you can manipulate things and this reinterpretation for instance gives you cohomology operations as morphisms between the representing objects. Another feature is that you can actually use category theory in order to build topological spaces and to do homotopy theory. A central example is the nerve of a (small) category: You view the objects of your category as points, every morphism gives a 1-simplex, a pair of composable morphisms gives a 2-simplex and so on. Then you build a topological space out of this by associating a topological n-simplex to an n-simplex in the nerve, but you do some non-trivial gluing, for instance identity morphisms don't really give you any information so you shrink the associated edges. In the end you get a CW complex BC for every small category C. Properties of categories and functors translate into properties of this space and continuous maps between such spaces. For instance a natural transformation between two functors gives rise to a homotopy between the induced maps and an equivalence of categories gives a homotopy equivalence of the corresponding classifying spaces. Classifying spaces of categories give rise to classifying spaces of groups but you can also use them and related constructions to build the spaces of the algebraic K-theory spectrum of a ring, you can give models for iterated based loop spaces and you can construct explicit models of homotopy colimits and much more"--

Recenzijos

'It would be an excellent text for a graduate student just finishing introductory coursework and wanting to know about techniques in modern homotopy theory.' Julie Bergner ' this book attempts to bridge the gap between the basic theory and the application of categorical methods to homotopy theory, which has been the subject of some recent exciting developments the book would be very useful for beginner graduate students in homotopy theory.' Hollis Williams, IMA website 'The book has been thoughtfully written with students in mind, and contains plenty of pointers to the literature for those who want to pursue a subject further. Readers will find themselves taken on an engaging journey by a true expert in the field, who brings to the material both insight and style.' Daniel Dugger, MathSciNet (https://mathscinet.ams.org)

Daugiau informacijos

Bridge the gap between category theory and its applications in homotopy theory with this guide for graduate students and researchers.
Introduction 1(4)
Part I Category Theory
5(204)
1 Basic Notions In Category Theory
7(20)
1.1 Definition of a Category and Examples
7(5)
1.2 EI Categories and Groupoids
12(2)
1.3 Epi-and Monomorphisms
14(4)
1.4 Subcategories and Functors
18(7)
1.5 Terminal and Initial Objects
25(2)
2 Natural Transformations And The Yoneda Lemma
27(22)
2.1 Natural Transformations
27(5)
2.2 The Yoneda Lemma
32(5)
2.3 Equivalences of Categories
37(1)
2.4 Adjoint Pairs of Functors
38(8)
2.5 Equivalences of Categories via Adjoint Functors
46(1)
2.6 Skeleta of Categories
47(2)
3 Colimits And Limits
49(22)
3.1 Diagrams and Their Colimits
49(14)
3.2 Existence of Colimits and Limits
63(2)
3.3 Colimits and Limits in Functor Categories
65(1)
3.4 Adjoint Functors and Colimits and Limits
66(2)
3.5 Exchange Rules for Colimits and Limits
68(3)
4 Kan Extensions
71(20)
4.1 Left Kan Extensions
71(6)
4.2 Right Kan Extensions
77(2)
4.3 Functors Preserving Kan Extensions
79(2)
4.4 Ends
81(4)
4.5 Coends as Colimits and Ends as Limits
85(1)
4.6 Calculus Notation
86(1)
4.7 "All Concepts are Kan Extensions"
87(4)
5 Comma Categories And The Grothendieck Construction
91(18)
5.1 Comma Categories: Definition and Special Cases
91(6)
5.2 Changing Diagrams for Colimits
97(3)
5.3 Sifted Colimits
100(2)
5.4 Density Results
102(4)
5.5 The Grothendieck Construction
106(3)
6 Monads And Comonads
109(32)
6.1 Monads
109(3)
6.2 Algebras over Monads
112(8)
6.3 Kleisli Category
120(5)
6.4 Lifting Left Adjoints
125(2)
6.5 Colimits and Limits of Algebras over a Monad
127(10)
6.6 Monadicity
137(3)
6.7 Comonads
140(1)
7 Abelian Categories
141(8)
7.1 Preadditive Categories
141(4)
7.2 Additive Categories
145(1)
7.3 Abelian Categories
146(3)
8 Symmetric Monoidal Categories
149(31)
8.1 Monoidal Categories
149(8)
8.2 Symmetric Monoidal Categories
157(4)
8.3 Monoidal Functors
161(6)
8.4 Closed Symmetric Monoidal Categories
167(2)
8.5 Compactly Generated Spaces
169(6)
8.6 Braided Monoidal Categories
175(5)
9 Enriched Categories
180(29)
9.1 Basic Notions
180(4)
9.2 Underlying Category of an Enriched Category
184(4)
9.3 Enriched Yoneda Lemma
188(4)
9.4 Cotensored and Tensored Categories
192(2)
9.5 Categories Enriched in Categories
194(2)
9.6 Bicategories
196(4)
9.7 Functor Categories
200(1)
9.8 Day Convolution Product
201(8)
Part II From Categories to Homotopy Theory
209(163)
10 Simplicial Objects
211(40)
10.1 The Simplicial Category
211(2)
10.2 Simplicial and Cosimplicial Objects
213(3)
10.3 Interlude: Joyal's Category of Intervals
216(4)
10.4 Bar and Cobar Constructions
220(5)
10.5 Simplicial Homotopies
225(2)
10.6 Geometric Realization of a Simplicial Set
227(5)
10.7 Skeleta of Simplicial Sets
232(1)
10.8 Geometric Realization of Bisimplicial Sets
233(2)
10.9 The Fat Realization of a (Semi)Simplicial Set or Space
235(1)
10.10 The Totalization of a Cosimplicial Space
236(2)
10.11 Dold-Kan Correspondence
238(1)
10.12 Kan Condition
239(4)
10.13 Quasi-Categories and Joins of Simplicial Sets
243(3)
10.14 Segal Sets
246(2)
10.15 Symmetric Spectra
248(3)
11 The Nerve And The Classifying Space Of A Small Category
251(34)
11.1 The Nerve of a Small Category
251(3)
11.2 The Classifying Space and Some of Its Properties
254(3)
11.3 π0 and π1 of Small Categories
257(4)
11.4 The Bousfield Kan Homotopy Colimit
261(5)
11.5 Coverings of Classifying Spaces
266(2)
11.6 Fibers and Homotopy Fibers
268(5)
11.7 Theorems A and B
273(5)
11.8 Monoidal and Symmetric Monoidal Categories, Revisited
278(7)
12 A Brief Introduction To Operads
285(19)
12.1 Definition and Examples
285(5)
12.2 Algebras Over Operads
290(4)
12.3 Examples
294(8)
12.4 E∞-monoidal Functors
302(2)
13 Classifying Spaces Of Symmetric Monoidal Categories
304(12)
13.1 Commutative H-Space Structure on BC for C Symmetric Monoidal
304(3)
13.2 Group Completion of Discrete Monoids
307(3)
13.3 Grayson--Quillen Construction
310(3)
13.4 Group Completion of H-Spaces
313(3)
14 Approaches To Iterated Loop Spaces Via Diagram Categories
316(30)
14.1 Diagram Categories Determine Algebraic Structure
316(4)
14.2 Reduced Simplicial Spaces and Loop Spaces
320(1)
14.3 Gamma-Spaces
320(5)
14.4 Segal K-Theory of a Permutative Category
325(3)
14.5 Injections and Infinite Loop Spaces
328(1)
14.6 Braided Injections and Double Loop Spaces
329(2)
14.7 Iterated Monoidal Categories as Models for Iterated Loop Spaces
331(3)
14.8 The Category n
334(12)
15 Functor Homology
346(15)
15.1 Tensor Products
347(1)
15.2 Tor and Ext
348(2)
15.3 How Does One Obtain a Functor Homology Description?
350(5)
15.4 Cyclic Homology as Functor Homology
355(2)
15.5 The Case of Gamma Homology
357(2)
15.6 Adjoint Base-Change
359(2)
16 Homology And Cohomology Of Small Categories
361(11)
16.1 Thomason Cohomology and Homology of Categories
361(2)
16.2 Quillen's Definition
363(1)
16.3 Spectral Sequence for Homotopy Colimits in Chain Complexes
364(1)
16.4 Baues--Wirsching Cohomology and Homology
365(2)
16.5 Comparison of Functor Homology and Homology of Small Categories
367(5)
References 372(12)
Index 384
Birgit Richter is Professor of Mathematics at Universität Hamburg. She is the co-editor of Structured Ring Spectra (2004) and New Topological Contexts for Galois Theory and Algebraic Geometry (2009).