Introduction |
|
1 | (4) |
|
|
5 | (204) |
|
1 Basic Notions In Category Theory |
|
|
7 | (20) |
|
1.1 Definition of a Category and Examples |
|
|
7 | (5) |
|
1.2 EI Categories and Groupoids |
|
|
12 | (2) |
|
1.3 Epi-and Monomorphisms |
|
|
14 | (4) |
|
1.4 Subcategories and Functors |
|
|
18 | (7) |
|
1.5 Terminal and Initial Objects |
|
|
25 | (2) |
|
2 Natural Transformations And The Yoneda Lemma |
|
|
27 | (22) |
|
2.1 Natural Transformations |
|
|
27 | (5) |
|
|
32 | (5) |
|
2.3 Equivalences of Categories |
|
|
37 | (1) |
|
2.4 Adjoint Pairs of Functors |
|
|
38 | (8) |
|
2.5 Equivalences of Categories via Adjoint Functors |
|
|
46 | (1) |
|
2.6 Skeleta of Categories |
|
|
47 | (2) |
|
|
49 | (22) |
|
3.1 Diagrams and Their Colimits |
|
|
49 | (14) |
|
3.2 Existence of Colimits and Limits |
|
|
63 | (2) |
|
3.3 Colimits and Limits in Functor Categories |
|
|
65 | (1) |
|
3.4 Adjoint Functors and Colimits and Limits |
|
|
66 | (2) |
|
3.5 Exchange Rules for Colimits and Limits |
|
|
68 | (3) |
|
|
71 | (20) |
|
|
71 | (6) |
|
|
77 | (2) |
|
4.3 Functors Preserving Kan Extensions |
|
|
79 | (2) |
|
|
81 | (4) |
|
4.5 Coends as Colimits and Ends as Limits |
|
|
85 | (1) |
|
|
86 | (1) |
|
4.7 "All Concepts are Kan Extensions" |
|
|
87 | (4) |
|
5 Comma Categories And The Grothendieck Construction |
|
|
91 | (18) |
|
5.1 Comma Categories: Definition and Special Cases |
|
|
91 | (6) |
|
5.2 Changing Diagrams for Colimits |
|
|
97 | (3) |
|
|
100 | (2) |
|
|
102 | (4) |
|
5.5 The Grothendieck Construction |
|
|
106 | (3) |
|
|
109 | (32) |
|
|
109 | (3) |
|
|
112 | (8) |
|
|
120 | (5) |
|
6.4 Lifting Left Adjoints |
|
|
125 | (2) |
|
6.5 Colimits and Limits of Algebras over a Monad |
|
|
127 | (10) |
|
|
137 | (3) |
|
|
140 | (1) |
|
|
141 | (8) |
|
7.1 Preadditive Categories |
|
|
141 | (4) |
|
|
145 | (1) |
|
|
146 | (3) |
|
8 Symmetric Monoidal Categories |
|
|
149 | (31) |
|
|
149 | (8) |
|
8.2 Symmetric Monoidal Categories |
|
|
157 | (4) |
|
|
161 | (6) |
|
8.4 Closed Symmetric Monoidal Categories |
|
|
167 | (2) |
|
8.5 Compactly Generated Spaces |
|
|
169 | (6) |
|
8.6 Braided Monoidal Categories |
|
|
175 | (5) |
|
|
180 | (29) |
|
|
180 | (4) |
|
9.2 Underlying Category of an Enriched Category |
|
|
184 | (4) |
|
9.3 Enriched Yoneda Lemma |
|
|
188 | (4) |
|
9.4 Cotensored and Tensored Categories |
|
|
192 | (2) |
|
9.5 Categories Enriched in Categories |
|
|
194 | (2) |
|
|
196 | (4) |
|
|
200 | (1) |
|
9.8 Day Convolution Product |
|
|
201 | (8) |
|
Part II From Categories to Homotopy Theory |
|
|
209 | (163) |
|
|
211 | (40) |
|
10.1 The Simplicial Category |
|
|
211 | (2) |
|
10.2 Simplicial and Cosimplicial Objects |
|
|
213 | (3) |
|
10.3 Interlude: Joyal's Category of Intervals |
|
|
216 | (4) |
|
10.4 Bar and Cobar Constructions |
|
|
220 | (5) |
|
10.5 Simplicial Homotopies |
|
|
225 | (2) |
|
10.6 Geometric Realization of a Simplicial Set |
|
|
227 | (5) |
|
10.7 Skeleta of Simplicial Sets |
|
|
232 | (1) |
|
10.8 Geometric Realization of Bisimplicial Sets |
|
|
233 | (2) |
|
10.9 The Fat Realization of a (Semi)Simplicial Set or Space |
|
|
235 | (1) |
|
10.10 The Totalization of a Cosimplicial Space |
|
|
236 | (2) |
|
10.11 Dold-Kan Correspondence |
|
|
238 | (1) |
|
|
239 | (4) |
|
10.13 Quasi-Categories and Joins of Simplicial Sets |
|
|
243 | (3) |
|
|
246 | (2) |
|
|
248 | (3) |
|
11 The Nerve And The Classifying Space Of A Small Category |
|
|
251 | (34) |
|
11.1 The Nerve of a Small Category |
|
|
251 | (3) |
|
11.2 The Classifying Space and Some of Its Properties |
|
|
254 | (3) |
|
11.3 π0 and π1 of Small Categories |
|
|
257 | (4) |
|
11.4 The Bousfield Kan Homotopy Colimit |
|
|
261 | (5) |
|
11.5 Coverings of Classifying Spaces |
|
|
266 | (2) |
|
11.6 Fibers and Homotopy Fibers |
|
|
268 | (5) |
|
|
273 | (5) |
|
11.8 Monoidal and Symmetric Monoidal Categories, Revisited |
|
|
278 | (7) |
|
12 A Brief Introduction To Operads |
|
|
285 | (19) |
|
12.1 Definition and Examples |
|
|
285 | (5) |
|
12.2 Algebras Over Operads |
|
|
290 | (4) |
|
|
294 | (8) |
|
12.4 E∞-monoidal Functors |
|
|
302 | (2) |
|
13 Classifying Spaces Of Symmetric Monoidal Categories |
|
|
304 | (12) |
|
13.1 Commutative H-Space Structure on BC for C Symmetric Monoidal |
|
|
304 | (3) |
|
13.2 Group Completion of Discrete Monoids |
|
|
307 | (3) |
|
13.3 Grayson--Quillen Construction |
|
|
310 | (3) |
|
13.4 Group Completion of H-Spaces |
|
|
313 | (3) |
|
14 Approaches To Iterated Loop Spaces Via Diagram Categories |
|
|
316 | (30) |
|
14.1 Diagram Categories Determine Algebraic Structure |
|
|
316 | (4) |
|
14.2 Reduced Simplicial Spaces and Loop Spaces |
|
|
320 | (1) |
|
|
320 | (5) |
|
14.4 Segal K-Theory of a Permutative Category |
|
|
325 | (3) |
|
14.5 Injections and Infinite Loop Spaces |
|
|
328 | (1) |
|
14.6 Braided Injections and Double Loop Spaces |
|
|
329 | (2) |
|
14.7 Iterated Monoidal Categories as Models for Iterated Loop Spaces |
|
|
331 | (3) |
|
|
334 | (12) |
|
|
346 | (15) |
|
|
347 | (1) |
|
|
348 | (2) |
|
15.3 How Does One Obtain a Functor Homology Description? |
|
|
350 | (5) |
|
15.4 Cyclic Homology as Functor Homology |
|
|
355 | (2) |
|
15.5 The Case of Gamma Homology |
|
|
357 | (2) |
|
|
359 | (2) |
|
16 Homology And Cohomology Of Small Categories |
|
|
361 | (11) |
|
16.1 Thomason Cohomology and Homology of Categories |
|
|
361 | (2) |
|
16.2 Quillen's Definition |
|
|
363 | (1) |
|
16.3 Spectral Sequence for Homotopy Colimits in Chain Complexes |
|
|
364 | (1) |
|
16.4 Baues--Wirsching Cohomology and Homology |
|
|
365 | (2) |
|
16.5 Comparison of Functor Homology and Homology of Small Categories |
|
|
367 | (5) |
References |
|
372 | (12) |
Index |
|
384 | |